
Licentiate Thesis in Electrical Engineering

Learning in the Loop: On Neural
Network-based Model Predictive
Control and Cooperative
System Identification
REBECKA WINQVIST

Stockholm, Sweden 2023

kth royal institute
of technology

Learning in the Loop: On Neural
Network-based Model Predictive
Control and Cooperative
System Identification
REBECKA WINQVIST

Licentiate Thesis in Electrical Engineering
KTH Royal Institute of Technology
Stockholm, Sweden 2023

Academic Dissertation which, with due permission of the KTH Royal Institute of Technology,
is submitted for public defence for the Degree of Licentiate of Engineering on Wednesday the
22nd November 2023, at 1:00 p.m. in Q2, Malvinas väg 10, Stockholm.

© Rebecka Winqvist

TRITA-EECS-AVL-2023:63
ISBN 978-91-8040-710-6

Printed by: Universitetsservice US-AB, Sweden 2023

Till mormor

Abstract

In the context of control systems, the integration of machine learning
mechanisms has emerged as a key approach for improving performance and
adaptability. Notable progress has been made across several aspects of the
control loop, including learning-based techniques for system identification and
estimation, filtering and denoising, and controller design. This thesis delves
into the rapidly expanding domain of learning in control, with a particular
focus placed on learning-based controllers and learning-based identification
methods.

The first part of this thesis is devoted to the investigation of Neural
Network approximations of Model Predictive Control (MPC). Model-agnostic
neural network structures are compared to networks employing MPC-specific
information, and evaluated in terms of two performance metrics. The main
novel aspect lies in the incorporation of gradient data in the training process,
which is shown to enhance the accuracy of the network generated control
inputs. Furthermore, experimental results reveal that MPC-informed net-
works outperform the agnostic counterparts in scenarios when training data
is limited.

In acknowledgement of the crucial role accurate system models play in
in the control loop, the second part of this thesis lends its focus to learning-
based identification methods. This line of work addresses the important task
of characterizing and modeling dynamical systems, by introducing cooperative
system identification techniques to enhance estimation performance. Specif-
ically, it presents a novel and generalized formulation of the Correctional
Learning framework, leveraging tools from Optimal Transport. The correc-
tional learning framework centers around a teacher-student model, where an
expert agent (teacher) modifies the sampled data used by the learner agent
(student), to improve the student’s estimation process. By formulating correc-
tional learning as an optimal transport problem, a more adaptable framework
is achieved, better suited for estimating complex system characteristics and
accommodating alternative intervention strategies.

i

Sammanfattning

Inom reglerteknik har integrationen av maskininlärningsmetoder fram-
trätt som en central strategi för att förbättra prestanda och adaptivitet hos
styrsystem. Betydande framsteg har gjorts inom flera viktiga aspekter av
reglerkretsen, s̊asom inlärningsbaserade metoder för systemidentifiering och
parameterskattning, filtrering och brusreducering samt reglersyntes. Denna
avhandling fördjupar sig i omr̊adet inlärning för reglerteknik med särskild
betoning p̊a inlärningsbaserade regulatorer och identifieringsmetoder.

Avhandlingens första del behandlar undersökningen av neuronnätsbaserad
Modellprediktiv Reglering (MPC). Olika nätstrukturer studeras, b̊ade generel-
la black box-nät och nät som väver in MPC-specifik information i sin struktur.
Dessa nät jämförs och utvärderas med avseende p̊a tv̊a prestandam̊att genom
experiment p̊a realistiska tv̊a- och fyrdimensionella system. Den huvudsakli-
ga nyskapande aspekten är inkluderingen av gradientdata i träningsprocessen,
vilket visar sig förbättra noggrannheten av de genererade styrsignalerna. Vi-
dare p̊avisar de experimentella resultaten att en MPC-informerad nätstruktur
leder till förbättrad prestanda när mängden träningsdata är begränsad.

Med insikt om vikten av noggranna matematiska modeller av styrsyste-
met, riktar den andra delen av avhandlingen sitt fokus mot inlärningsbaserade
identifieringsmetoder. Denna forskningsgren behandlar karakterisering och
modellering av dynamiska system med hjälp av maskininlärning. Avhand-
lingen bidrar till omr̊adet genom att introducera kooperativa systemidenti-
fieringsmetoder för att förbättra parameterskattningen. Specifikt utnyttjas
verktyg fr̊an Optimal Transport för att introducera en ny och mer generell
formulering av ramverket Correctional Learning. Detta ramverk är baserat p̊a
en mästare-lärlingsmodell, där en expertagent (mästare) observerar och mo-
difierar den insamlade data som används av en lärande agent (lärling), med
syftet att förbättra lärlingens skattningsprocess. Genom att formulera correc-
tional learning som ett optimal transport-problem erh̊alls ett mer flexibelt
ramverk, bättre lämpat för skattning av komplexa systemegenskaper samt
anpassning till alternativa handlingsstrategier.

iii

Acknowledgements

This thesis is the result of half a life’s worth of choices and adventures, many
of which would never have been possible if not for the people below. I owe a lot to
many, to you I owe the most.

I would like to start by expressing my sincerest gratitude to my supervisor, Bo
Wahlberg, whose commitment to creating a strong and supportive research atmo-
sphere has made my academic journey a truly exceptional one. I am especially
thankful for your invaluable input and guidance throughout these years, and for
giving me the trust and freedom to explore different research directions. A deep
thank you also to my co-supervisor, Cristian Rojas, for your willingness to help, dis-
cuss and inspire by sharing from your bottomless pool of knowledge. Your guidance
has been central for developing the second part of this thesis.

Embarking on a PhD journey is a challenge in and of itself. Doing so in the
midst of a burning pandemic indeed adds another level to it. Therefore, I extend
a special thank you to Christine Korssell, for keeping me sane with our long, well-
needed walks when working from home, and for being a great friend in general. A
massive thanks also to Robert Bereza, both for the above, but also for all the help
and support at work during this time. My first year would have been absolutely
dreadful without you, and I doubt I would have made it out on the other side,
had it not been for you. Thank you for never failing to initiate... let’s call them
“interesting”... discussions during lunches, and for sharing your exciting life (train)
stories with us oldies. Keep keeping us young, wild and crazy.

Another special thanks goes out to Inês Lourenço, for being a great mentor,
collaborator and friend. Thank you for your kindness, for your contagious joy and
laughter, and for everything you have taught me. I wish you all the best for your
future booking endeavors and adventures. Dz̆enan Lapandić, Rijad Alisic and Elis
Stefansson, thank you for all the great times brightening up those not-so-great
working days. Dz̆enan especially for always making me laugh, Rijad for reminding
me of home, and Elis for the joy and music. Alessio Russo, Adam Miksits, Elisa Bin
and Jacob Lindbäck for being great office mates and contributing to the friendly and
fun atmosphere at work. May you all live long and linear. Mayank “Majs” Sewlia
for conversations on just about everything, and for being easily startled – drive safe!
Javad Parsa, for all the fun we have had during our trips; a moment is never dull
with you. Miguel Aguiar, Adrian Wiltz, Braghadeesh Lakshminarayanan, Viktor
Molnö and Erik Berglund, for friendship. Joana Fonseca and Pedro Roque, for
your unwavering kindness, encouragement, help and advice when it was needed the
most.

Caroline Halfvarsson, my longest standing friend – thank you! After all these
years of long-distance friendship, I’m very much looking forward to appropriately
timed (and discounted) in-person dinners, second-hand shopping and inspiring con-
versations. May we happily discover that every street has a store with a Thorne.

Wera Maurtiz, nearing one decade of friendship, I can see why you might feel
the need to travel halfway across the world to get some time away from me. Trust

v

me, if anything, this work has taught me patience and perseverance – so, I’ll still
be here when you get back. Until you do, I hope your journey will be everything
you ever hoped for, and more. Enjoy the spiders.

David Ekvall, for being many things, but a great friend in particular. I will
be eternally grateful for your help in moving all my cows from the equator. For
that, I owe you countless hours of wall-painting and garage restoring (applies only
to properties on Gotland).

Carl-Daniel Ahlberg, for your endless love, patience and support, even after I
almost accidentally killed you with pesto. Thank you for teaching me things (even
when I get frustrated), for inspiring me (especially when prehab exercises suck),
for your internal GPS when we are (well, I am) lost, and for always having (and
scratching) my chlorine dried-out back.

Samuel, I’d better mention you here, just in case you become more successful
than me (which, let’s face it, you probably will). Never forget who eagerly tried
to teach you how to read, who proofread your school assignments, and who still
makes sure that all birthday and Christmas presents are bought on time.

Finally, my parents, whom without none of this would ever have been possible.
Thank you for everything that you have done, and will continue to do. For you, I
am eternally grateful.

Rebecka Winqvist
October 2023.

vi

Abbrevations & Acronyms

BBNN Black Box Neural Network
CLQR Constrained Linear Quadratic Regulator
cpmf Conditional Probability Mass Function
DPP Disciplined Parametrized Programming
eMPC Explicit Model Predictive Control
FFNN Feed-Forward Neural Network
HAR Hit-And-Run
LQ Linear-Quadratic
LQR Linear-Quadratic Regulator
LQR-PNN LQR Projection Neural Network
LSTM Long Short-Term Memory
MDP Markov Decision Process
ML Machine Learning
MPC Model Predictive Control
MSE Mean Squared Error
NMSE Normalized Mean Squared Error
PID Proportional-Integral-Derivative (control)
PNN Projection Neural Network
PWA Piece-Wise Affine
ReLU Rectified Linear Unit
RNN Recurrent Neural Network

ix

Symbols & Notation

General

N0 The set of natural numbers including zero

N+ The set of non-negative natural numbers

R, (R+) The set of (non-negative) real numbers

Z, (Z+) The set of (non-negative) integers

A ⊆ B Set A is a subset of set B

A ⊂ B Set A is a proper subset of set B

card(S) The cardinality of a set S⋂
Set intersection⋃
Set union

1 Vector of ones

I(·) The indicator function

I The identity matrix

vT Transpose of vector v

ℓp = ∥v∥p The p-norm of a vector v

A ≻ 0 Matrix A is positive definite

A ⪰ 0 Matrix A is positive semi-definite

U[a, b], D[a, b), U(a, b) Continuous uniform distribution with closed, half-open,
open intervals

U({a, . . . , b}) Discrete unfirom distribution

Pr[·] Probability of event ·

x

∼ Distributed according to

E[X] Expected value of X

var(X) Variance of X

∇f(·) Gradient of f(·)

∂f(·) Partial derivative of f(·)

k Discrete time

Part I:

x State

u Control signal (input)

y Output

X State space (state constraints)

U Input space (input constraints)

Y Output space (output constraints)

n State dimension (dimension of x)

m Input dimension (dimension of u)

p Output dimension (dimension of y)

A Dynamics matrix

B Control matrix

C Sensor matrix

D Direct term

λ Eigenvalue

x0 Initial state (of trajectory)

C Control invariant set

C∞ Maximal control invariant set

Xf Terminal state constraints

N MPC horizon length

Q, QN , R Cost matrices

xi

L The control matrix of the LQR

q The number of eMPC regions

J , Jn Control cost, Normalized control cost

θ Neural network parameters

d Dimension of network parameters θ

φ(·) Neural network activation function

f(· ; θ) Learned neural network mapping

L(·) Neural network loss function

û Neural network predicted control signal

u′ Gradient of u w.r.t. x

γ Gradient weight coefficient

Dx, Du, Du′ Training datasets: states, control inputs, control input gradients

Part II:

M Number of outcomes in multinomial distribution

[v]i The ith element of a vector v

(Y,B) A measurable space: Y is a set, B is a σ-algebra of subsets of Y

M+(Y) The set of positive measures on (Y,B)

M Model class

θ Parameter vector

θ0 True value of parameter vector

d Dimension of θ

O, (Õ) Set of (modified) observations

N Number of observed samples

n The number of states

L(·) Likelihood function

b The teacher’s intervention budget

P State transition matrix

µ∗ Optimal online policy for the teacher

xii

Contents

Abbrevations & Acronyms ix

Symbols & Notation x

Contents xiv

1 Introduction 1
1.1 Learning in the Control Loop . 3
1.2 Learning for Controller Design . 4
1.3 Learning for System Identification 7
1.4 Thesis Outline . 10

2 Preliminaries 13
2.1 Notation . 13
2.2 Constrained Linear Systems . 14
2.3 Optimal Control Strategies . 17
2.4 System Identification and Estimation 21
2.5 Cooperative System Identification 22
2.6 Neural Networks . 24
2.7 Markov Decision Processes . 29
2.8 Optimal Transport . 31

I Learning Model Predictive Control 33

3 Neural Network Approaches for Model Predictive Control 35
3.1 Introduction . 35
3.2 Related Work . 37
3.3 Preliminaries . 38
3.4 Designing Neural Network Structures 41
3.5 Learning MPC from Gradient Data 53
3.6 Section Summary . 59
3.7 Chapter Conclusion . 59

xiv

3.8 Recent Advances . 59

II Cooperative System Identification 61

4 Online Correctional Learning 63
4.1 Introduction . 63
4.2 Batch Correctional Learning . 66
4.3 Correctional Learning Bounds for Discrete Systems 67
4.4 Online Correctional Learning . 68
4.5 Numerical Experiments . 72
4.6 Chapter Summary . 76

Appendices 77
4.A Bounding the Decrease in Variance 77

5 Optimal Transport for Correctional Learning 81
5.1 Introduction . 81
5.2 Preliminaries . 83
5.3 Correctional Learning as an Optimal Transport Problem 85
5.4 Numerical results . 89
5.5 Chapter Summary . 92

6 Conclusions and Future Work 95

References 99

xv

Chapter 1

Introduction

“The expert in anything was once a beginner.”
— Helen Hayes

During my time as an undergraduate in an engineering program, there was
a running joke among students suggesting that our education was really all about
“learning to learn”. It carried the underlying message that the most valuable quality
in an engineer was the ability to quickly learn, process and apply new information.
In one way or another, this outlook on engineering seemed to manifest itself in
every course we took, emphasizing the importance of the skill to learn. As we
progressed through our degree, we began to realize that perhaps this joke held
more truth than we initially thought. By moving from recognizing the importance
of learning to explaining its essence, we raise some interesting questions: what
exactly is learning, and why have we become so intent on understanding how we
do it?

Learning is an innate and fundamental process that lies at the very heart of
human progress. It defines our growth and development as individuals, and is what
enables societal and technological advancements. In some sense, learning can be
viewed as a lifelong process of acquiring knowledge, skills and experience. Whether
it is through formal education, personal exploration, or through interactions with
our environment, learning is what shapes our understanding of ourselves as well as
the complexities of the world around us.

Throughout life, we experience learning in different ways. When we think of
learning, we might think of repeated experiences and training, such as revising a
topic for an exam, or practicing a skill. However, we also encounter instantaneous
learning from e.g. the pain of touching a hot stove, or slipping on an icy surface.
In psychology, learning is referred to as a hypothetical construct, meaning it cannot
be directly observed, but only inferred from observable behaviour [1]. While this
work will not delve deeper into the topic of hypothetical constructs, it is still an
interesting remark to consider for the discussions in the upcoming chapters.

1

2 Ch.1 Introduction

The field of psychology offers many different and sophisticated definitions of
learning, see [1] for an introduction. In this work, we will consider a more conven-
tional (and more relaxed) definition found in the Oxford dictionary [2] that better
aligns with an engineering context.

Definition 1.1 (Learning). The process of acquiring knowledge or a skill as a result
of study, experience, or teaching.

In a world that thrives on knowledge and innovation, the importance of learning
is becoming increasingly evident. With the rapid expansion of technologies such
as the Internet of Things and the evolution of smart cities, the available data
has become too vast and complex for humans to analyze. As a result, Machine
Learning (ML) has emerged as a tool to pick up where human capabilities leave
off. At its core, ML tries to mimic the human learning process by leveraging large
volumes of data to train mathematical models to perform various tasks. In simpler
terms, machine learning is essentially about function estimation, i.e., uncovering
mathematical relationships from data. In some sense, we can say that human
learning and machine learning form a symbiotic relationship: as humans, we provide
the foundational knowledge, intuition and creativity that shape the learning models,
whereas machine learning augments our capabilities by detecting complex patterns
and revealing insights that would otherwise be too intricate or too time-consuming
for us to discover.

Over the past few decades, machine learning has gained immense popularity and
achieved great success in a wide range of applications. It has found its way into
our everyday lives through the integration of smart home devices, recommender
systems for streaming services, and through voice assistants such as Google As-
sistant, Amazon Alexa and iPhone’s Siri. In the service sector, ML is extensively
used in finance for algorithmic trading strategies, portfolio management, and fraud
detection [3,4]. ML technology has also been adopted in healthcare through health
monitoring devices such as smart watches and other wellness trackers [5, 6]. In
addition, ML-based approaches has become an integral part of speech and image
processing applications, where it enables technologies like facial recognition, noise
cancellation, and medical imaging and diagnosis. Other highly relevant applica-
tions include autonomous vehicles [7, 8], natural language processing models [9],
including the recently developed chatGPT, and smart solutions in the industrial
sector [10–12].

In this thesis, we will explore machine learning in the context of control systems
engineering. Specifically, we will focus on employing machine learning techniques
for controller design and parameter estimation. Throughout the remainder of this
work, we will use the term learning to refer to some form of artificial or machine
learning (non-human learning).

1.1 Learning in the Control Loop 3

1.1 Learning in the Control Loop

Combining learning and control theory is not a novel concept. In fact, the fields
of control, information and neural science were once considered an integral part
of and studied under the interdisciplinary banner of cybernetics [13]. Since then,
the individual disciplines gradually diverged into the fields as we know them today,
which caused an unfortunate breakdown in communication between them. This
separation has resulted in the co-development of different approaches to the same
problems, largely due to differences in terminology and notations [13,14].

However, with the explosive progression of machine learning, we are observing
a notable shift in this trend, with researchers actively working to re-bridge the
gap between the communities, see e.g. [14]. This newfound companionship is also
reflected in the growing body of published works and literature on machine learning
for control [15–18] and control for machine learning [19–22]. In this thesis, our
primary focus will be on the former.

In essence, the overall goal of any control problem is to construct a controller
(or regulator) for generating control inputs that will drive the system to a desired
state [23]. In real-life applications, additional performance specifications must often
be considered. Typically, we want to minimize the control error, that is, the discrep-
ancy between the performed and desired system behaviour. Moreover, robustness
against external external disturbances or system variations, as well as ensuring
safety and stability, are often required. To meet these specifications, feedback con-
trol is commonly employed, where measurements of the system’s state or output
are fed back to the controller. This scheme of “closing the loop” holds many nice
properties that can be exploited when designing control systems, see e.g. [23, 24].

A typical example of a feedback loop is shown in Figure 1.2. As we can see,
the controller is just one of many essential components that form the closed-loop
system. For instance, in a classical control problem, estimation techniques are
typically employed to estimate the system’s internal state or to identify a math-
ematical model describing the dynamics of the system. This process is known as
system identification and plays an important part in the design process [25]. Fur-
thermore, measurements signals are generally corrupted by internal and/or external
noise. Feedback control, for example, has the potential disadvantage of introduc-
ing unwanted sensor noise into the system. To improve the quality of the signals,
filtering and smoothing techniques are often applied. To solve these tasks, sev-
eral approaches utilizing tools from machine learning have emerged alongside more
traditional methods. For example, notable progress has been made in the develop-
ment of learning-based techniques for system identification and estimation [26,27],
filtering and denoising [28], and controller design [29,30].

4 Ch.1 Introduction

+ Controller System Sensors +

Filter

outputreference

noise noise
external disturbances modelling

Figure 1.1: A traditional control loop with output feedback.

1.2 Learning for Controller Design

When it comes to designing and implementing controllers, there are many control
paradigms and techniques to choose from, each offering its own approach to achieve
desired system behaviour and performance. Among the most widely used ones we
find Proportional Derivative Integral (PID) control; Optimal Control, including the
Linear Quadratic Regulator (LQR) and the receding horizon approach Model Pre-
dictive Control (MPC); Adaptive Control; and Robust Control. The choice of control
strategy depends on factors such as performance requirements, system dynamics,
as well as robustness and safety needs.

Over the last decades, various machine learning techniques have been applied
in controller design, either in combination with or as replacements for conventional
controllers. We call these strategies hybrid analytics control systems and Machine
Learning Control (MLC), respectively. ML-based controllers offers the potential for
more efficient control strategies, improved system performance, and the ability to
handle complex systems where traditional control methods fall short. For example,
the inherent properties of Neural Networks (NNs) make them a natural fit for
nonlinear and multivariable control problems [13,31,32].

ML-based controllers have found applications in various domains, including pro-
cess control, robotics and automation, as well as aerial and under-water vehicles [32].
The controllers are typically based on supervised learning or Reinforcement Learn-
ing (RL) parardigms. In a supervised learning setting, the controller is trained
using labeled data, where the correct control actions are known for given input
states, see e.g. [32] and [33] for an overview. Reinforcement learning bears many
similarities to adaptive control [34]. In RL, a controller is learned from trial and
error, where it receives feedback from the environment in the form of rewards based
on its actions. RL-based controllers have been successfully applied in a wide range
of settings, including quadrotor control [35], power systems [36], and autonomous
vehicles [8, 37].

Despite their advantages, ML-based controllers also face many challenges. Learn-

1.2 Learning for Controller Design 5

ing algorithms are in general very data-hungry, and require extensive datasets to
be able to fully explore and capture the system’s behaviour. Collecting such data
can be both expensive and time-consuming, and in some cases even impractical or
impossible. A major challenge then lies in generating sufficient training data for
the algorithms to explore the entire state space.

In addition, ML-based controllers generally fail to provide stability and safety
guarantees, as well as mathematical analysis and explanation, largely due to their
probabilistic nature. This limitation is a significant disadvantage, especially when
dealing with highly safety-critical systems. Privacy concerns also arise as the data-
driven nature of ML introduce the potential risk of exposing sensitive or private
information during both the data collection and the learning process.

These concerns are not exclusive to the control community. To address them,
much effort has been put into the development of interpretable and explainable
learning models, see e.g. [38] for an overview. The topic of differential privacy has
emerged as a means to address privacy issues [39].

With this work, we contribute to the field through an investigation of the per-
formance of different neural network-based model predictive controllers and how
safety measures can be included in their learnable structure.

1.2.1 Neural Network-based Model Predictive Control

Most real-life systems, and safety-critical systems in particular, impose several con-
straints on the regulator design. These constraints are generally characterized by
safety and performance specifications on the system’s states, or by physical limita-
tions on the actuators. Effectively handling such constraints is thus an important
aspect of the control synthesis.

Model predictive control offers a significant advantage in constraint handling,
which has contributed to its widespread use in e.g. automotive applications, chemi-
cal processes, power systems, robotics and aerospace [40]. The MPC is an optimization-
based control strategy that relies on a mathematical model of the underlying sys-
tem’s dynamics. This model is used by the MPC to predict the future behaviour
of the system based on its current state and the applied control inputs. The MPC
paradigm involves computing an optimal control sequence at each time step by min-
imizing a cost function that reflects the control objective. The first input from this
sequence is then applied to the system, after which the procedure is repeated over
a receding horizon, enabling the MPC to continuously adapt the control input. As
the number of states and constraints increases, it is easy to see how this procedure
may quickly become computationally intractable.

A strategy for circumventing this issue is through offline pre-computation of
the control law. This transforms the problem into that of specifying a mapping
or lookup table in the form of a Piece-Wise Affine (PWA) function defined over
partitions of the state space. This approach is known as the Explicit MPC (eMPC),
and has further inspired the viewing of the MPC as a general learning problem.

6 Ch.1 Introduction

MPC

L(·) Errorx

u

f(x, θ)

Learning

Figure 1.2: Visualization of learning the MPC, where x is a sampled state, u∗ the
corresponding optimal control action, µ(x, θ) the control action generated by the
network, and L(·) the loss function comparing the two control actions.

As a result, a number of works involving the use of learning-based approaches have
been proposed recently, primarily in the form of neural networks [41–43].

The popularity of neural networks in approximating the MPC can be attributed
to their advanced features such as the Rectified Linear Unit (ReLU) activation
function, the Long-Short Term Memory (LSTM) structure, and recently developed
differentiable convex optimization layers [44, 45]. To some extent, these features
each hold some properties akin to those of the MPC and the eMPC, making them
an attractive choice for approximating MPC. Furthermore, recent work [46] shows
how ReLU-based networks can be extended with a projection block using Dykstra’s
algorithm to achieve feasibility guarantees on the generated control inputs.

While the idea of approximating the MPC by neural networks is by no means
novel, there are still many challenges with such approaches, both in terms of mod-
elling, training and evaluation. In particular, it is not obvious how to efficiently
generate training data for learning the control law as a mapping. Earlier work
employ either grid-based methods or random smapling, neither which scales well
to high dimensions. Moreover, it still remains unclear as to how different network
structures can be evaluated consistently. Thus, we recognize a need for a stan-
dardized framework for treatment of such approaches from an experimental design
point of view. In light of these challenges, we consider the following problems in
this work.

Problem 1.1. We examine how to train a neural network for implementing the
MPC, using state as input and the control law as output. Our aim is to investigate
how MPC-aware network structures compare against their model agnostic likes. For
data generation, we study the use of an efficient Hit-and-Run sampler that scales
well to high dimensions.

1.3 Learning for System Identification 7

Problem 1.2. As an alternative to an online projection strategy, we propose an
offline projection approach by incorporating a state of the art convex optimization
layer into the network’s learnable structure. In this way, we introduce MPC problem
specific information into the network that will influence the network’s weight update
during the training process.

Problem 1.3. As an extension to our framework, we propose an approach for
learning the MPC where we explicitly use structural information in the form of
gradient data in the training process. This is motivated by the observation that
recently proposed tools in differentiable convex optimization can provide both the
MPC feedback law as well as its corresponding gradient.

1.3 Learning for System Identification

The success of model-based control strategies similar to the MPC heavily relies on
having an accurate and reliable model of the system being controlled. However, in
many cases, obtaining such models directly from analysis of the system’s physical
characteristics is difficult, and we must resort to data-driven methods.

System identification is a classical topic in automatic control concerned with
constructing and validating models of dynamical systems from observed data. It is
a well-established field with several textbooks, see e.g. [25], software packages, and
a wide range of applications, spanning from process industries to biomedicine [47].
Over the years, researchers have developed an extensive collection of identification
methods for both parametric and non-parametric models, as well as for black-box
and grey-box models.

The underlying problem of system identification and machine learning is mutual:
inferring models from or determining mathematical relationships between input and
output data. There are therefore several obvious links connecting the two fields, as
discussed in [48] and [49]. In recent years, deep learning models have emerged as
the new standard for modeling highly complex systems in many disciplines, see [9].
This is mainly attributed to their inherent ability to identify and capture patterns
as a black-box model, which makes them particularly appealing when dealing with
non-linearities, uncertainties and large-scale systems.

A typical system identification problem consists of four steps:

(1) Experiment design: for data collection.

(2) Model selection: to decide upon a set of model structures.

(3) Parameter estimation: to determine the values of the model structure’s param-
eters that best align with the collected data.

(4) Model validation: to evaluate the model’s accuracy and reliability.

8 Ch.1 Introduction

Similar to the control problem, learning can be applied to different tasks within
a system identification problem. In this thesis, we restrict our focus to param-
eter estimation, with an emphasis on cooperative estimation methods. In these
methods, we leverage the power of collaborative learning to improve the estima-
tion process when data is limited and/or unrepresentative of the underlying system
characteristics.

1.3.1 Correctional Learning

In a parametric system identification scheme, the selected model set or structure
can be defined by a set of finite-dimensional parameters that represent the un-
known characteristics or properties of the system. These parameters can include
means and variances, or other properties that define the underlying data-generating
mechanism. The goal of parameter estimation is to determine the values of these
parameters that best align with the observed data.

Popular estimation techniques include traditional methods such as maximum
likelihood, maximum a posteriori (MAP), and Bayesian inference methods, as well
as more recent learning-based approaches. Common to most of these estimators is
their data-driven nature. However, in many real-world applications, the available
data often does not accurately represent the underlying distribution or behavior
of the system under study. This can be the result of limited sample sizes, biased
sampling methods, measurement errors, or the presence of outliers [50]. Relying
on such data when using data-driven estimators can result in inaccurate param-
eter estimation and poor model performance. For example, a recent study found
that commercially available facial analysis algorithms showed higher error rates for
darker-skinned individuals and women [51], which could be linked to unrepresenta-
tive training data. In addition, some existing methods rely on prior knowledge in
the estimation process. This comes with its own set of limitations, as determining
appropriate priors can be very difficult in practice.

To address these issues, Correctional Learning was recently developed to pro-
vide an alternative approach for incorporating external or prior knowledge into the
estimation process [52]. It arises from the idea of cooperative learning problems,
i.e., settings in which two or more agents work together towards a common goal.
The framework is structured around a teacher-student model, where an expert
(teacher) agent seeks to assist a learner (student) agent in its estimation process.
More specifically, the teacher’s goal is to modify (or correct) the observed data,
based on which the student forms its estimation. See Figure 1.3 for an illustration
of this process.

Correctional learning has shown promising results in an offline (batch) set-
ting [52], in which the teacher modifies entire batches of observations at once.
However, in many applications, observations arrive sequentially, which requires im-
mediate (online) action, due to the need for a learning process that adapts and
rapidly changes. Online algorithms often make learning faster and computationally
cheaper. In light of this, we consider the following problem.

1.3 Learning for System Identification 9

System
θ0

+ Student
(Estimation algorithm)

Teacher
θ0, yk, b

O Õ θ̂ → θ̃

Correction

original
observations

corrected
observations estimate

Figure 1.3: A schematic view of the correctional learning framework. The teacher
knows the true parameter value θ0 and the original samples xi. The teacher modifies
the original sequence of observations O into Õ by changing at most B samples.

Problem 1.4. Consider the batch correctional learning framework. Our goal is
to extend the idea to an online setting, where the teacher has to determine at each
time instant how to modify the observed data. We formulate the online problem as a
Markov Decision Process (MDP) and solve for the optimal strategy using dynamical
programming.

The correctional framework is further limited in its application in that the the-
oretical performance guarantees only hold for for simple systems. To describe real-
world phenomena, we typically require more complex distributions. For example, a
Gaussian distribution can be used to describe biological data such as the heights of
people. To model the probability of failure of an appliance, we can use the Weibull
distribution. Another disadvantage is that the teacher’s policy follows explicitly
from the solution, leaving no room for alternative intervention strategies to be con-
sidered. To apply correctional learning in more advanced settings, these limitations
must be tackled. We therefore consider the following problem.

Problem 1.5. In the context of correctional learning, we note that the optimal
corrections can be viewed as a transportation of probability mass from an initial
distribution into a target distribution. This interpretation has clear links to optimal
transport, a mathematical framework concerned with determining the most efficient
way of transporting mass from one location to another, according to some cost func-
tion. Using tools from optimal transport, our goal is to generalize the framework by
expressing the problem in terms of probability measures, thereby enabling the esti-
mation of more complex parameters and allowing for multiple intervention policies
for the teacher.

10 Ch.1 Introduction

1.4 Thesis Outline

This section provides an overview of the content of this thesis. The work is divided
into two main parts: learning-based MPC and cooperative system identification.
Each chapter is summarized and accompanied by their respective contributions.

Chapter 2 (Preliminaries). In this chapter, we will introduce the notation that will
be used throughout this thesis, as well as provide essential background material.
We will briefly cover a range of concepts within the fields of control systems and
machine learning, including constrained linear systems, optimal control strategies,
system identification, neural networks, and Markov decision processes.

Chapter 3 (Neural Network-Based MPC). This chapter is devoted to our work
on neural network-based MPC, where we investigate controller identification given
data from a constrained MPC. We propose an approach for learning the MPC that
explicitly incorporates gradient information during the training process. We lever-
age recent advances in differential convex optimization MPC solvers, which can
provide both the optimal feedback laws as well as the corresponding gradients. As
a proof of concept, we apply the approach to eMPC using neural networks with
rectified linear units (ReLU), chosen for their structural similarities to eMPC. The
motivation behind this work is to replace online solvers with neural networks to
implement the MPC and to simplify the computation in larger input dimensions.
In addition, we also study experimental design, model evaluation, and propose pro-
pose a hit-and-run sampling algorithm for input design. The proposed framework
is illustrated and numerically evaluated on a second order MPC problem.

The chapter is based on the contribution:

• R. Winqvist, A. Venkitaraman, and B. Wahlberg, “Learning Models of Model
Predictive Controllers using Gradient Data”, 19th IFAC Symposium on Sys-
tem Identification (SYSID), 2021.

Chapter 4 (Online Correctional Learning). This chapter covers our work on ex-
tending the off-line correctional learning framework to an on-line setting. We con-
sider the same underlying cooperative system identification problem: an expert
(teacher) agent aims to assist a learner (student) agent in its estimation process
by modifying the student’s observed data. In the on-line setting, data samples are
received sequentially, requiring the teacher to decide at each time instant whether
to modify a sample or not, while staying within a predefined intervention budget.
We formulate the problem as a Markov decision process and use dynamic program-
ming to solve for the optimal policy. Through our approach, we show how the
variance of the student’s estimate can be reduced with the help of the teacher. The
framework is validated through numerical experiments, and we also compare the
on-line optimal policy to the established off-line optimal policy.

1.4 Thesis Outline 11

The chapter is based on the publication listed below. As a co-author, my contri-
butions to the work included (partial) formulation of the Markov decision process,
the numerical experimental design and validation, analysis, literature review, and
manuscript writing.

• I. Lourenço, R. Winqvist, C. R. Rojas, B. Wahlberg, “A Teacher-Student
Markov Decision Process-based Framework for Online Correctional Learn-
ing”, IEEE 61st Conference on Decision and Control (CDC), pp. 3456-3461,
2022.

Chapter 5 (Optimal Transport for Correctional Learning). In this chapter, we
present a generalized formulation of the off-line correctional learning framework
by leveraging tools from optimal transport. Optimal transport is a mathematical
framework concerned with finding the most efficient way to transport mass from
one location to the other, according to some cost function. Motivated by the view of
correctional learning as a means of transforming an initial probability distribution
into a target distribution, we pose the correctional learning problem as an opti-
mization program in terms of distribution functions – i.e, as an optimal transport
problem. Compared to existing formulations of correctional learning, this novel
approach provides several benefits. For example, it allows for the estimation of
more complex characteristics as well as the consideration of multiple intervention
policies for the teacher. Our approach is evaluated on theoretical examples and a
human-robot interaction application in an inverse reinforcement learning setting.
The results highlight the potential of the framework across different domains.

The chapter is based on the following contribution:

• R. Winqvist, I. Lourenço, F. Quinzan, C. R. Rojas, B. Wahlberg, “Optimal
Transport for Correctional Learning” Accepted to be presented at the IEEE
62nd Conference on Decision and Control (CDC) 2023.

Chapter 6 (Conclusions and Future Work). In the final chapter, we summarize
the main contributions of this thesis and discuss possible directions for future work.

Chapter 2

Preliminaries

This chapter serves the purpose of laying the necessary groundwork for understand-
ing the concepts and ideas presented in the main part of this thesis. We begin with
a brief introduction of constrained linear systems, which lie at the base of this re-
search. We then delve into optimal control strategies, exploring their significance
in addressing the challenges posed by constrained system. Furthermore, we provide
an overview of system identification and parameter estimation, with a particular
emphasis on recently developed cooperative learning-based techniques. Lastly, we
present the concepts of Markov decision processes and optimal transport as vital
tools for implementing the main ideas of this research.

2.1 Notation

The topics covered in this thesis span a wide range of areas. In order to stay consis-
tent with the standard frameworks, the notation will shift accordingly throughout
the two parts. To aid the reader in keeping track of the notation, a comprehensive
nomenclature is provided in “Symbols & Notation” in the front matter. Whenever
a symbol takes on a new meaning that is not immediately clear from the context,
it will be explicitly redefined. Below we list some of the most frequently used
notations.

The set of natural numbers (including zero) is denoted by N0, the set of non-
negative natural numbers by N+, the set of (non-negative) real numbers by R
(R+), the set of (non-negative) integers by Z (Z+). All vectors are column vectors,
unless transposed, and inequalities between them are considered element-wise. For
a vector v, we use vT to denote its transpose, and [v]i to denote its ith element.
The ℓ1 and ℓ2 norms are denoted by ∥v∥1 and ∥v∥2, respectively. The indicator
function I(expr) returns a 1 if the expression expr is fulfilled, and 0 otherwise.
We let 1 denote the vector of ones, and I the identity matrix. The expected
value of a random variable X is denoted by E[X], and its variance is defined as
var(X) = E[(X−E[X])T (X−E[X])]. We use (Y,B) to denote a measurable space,

13

14 Ch.2 Preliminaries

in which Y is a set and B is a σ-algebra of subsets of Y. We denote the set of
positive measures on (Y,B) by M+(Y). For a set S, we use card(S) to denote its
cardinality.

2.2 Constrained Linear Systems

This section serves as a gentle introduction to constrained linear discrete-time sys-
tems and their structural properties. It also includes a brief section on set invari-
ance, which formally introduces the concept of control invariant sets.

2.2.1 Modeling of Discrete-Time Systems
A linear, time-invariant discrete-time system can be described by the difference
equations

xk+1 = Axk + Buk

yk = Cxk + Duk

(2.1)

where xk ∈ Rn is the state vector of the system at time k ∈ Z+, uk ∈ Rm the input
vector, yk ∈ Rp the output vector, A ∈ Rn×n the dynamics matrix, B ∈ Rn×m the
control matrix, C ∈ Rp×n the sensor matrix, and D ∈ Rp×m the direct term (often
set to 0) [23].

While such a model provides a good understanding of the underlying dynamics
of a system, it is generally unable to capture the full complexity of most physical
processes. For this reason, there will always be some deviation between the mathe-
matical model in (2.1) and the real system it is representing. Exploiting feedback in
the system control design is an important means for dealing with this uncertainty.

Most real-life systems are in addition subject to constraints on both the state
and the input, defined on their most general form by

xk ∈ X ∀k ∈ Z+ (2.2a)
uk ∈ U ∀k ∈ Z+, (2.2b)

where the sets X ⊆ Rn and U ⊆ Rm are polyhedra. The state constraints are
generally imposed by safety and performance specifications or other behavioural
requirements, while the input constraints, on the other hand, are characterized by
actual physical limitations — meaning they will be enforced whether the synthesized
controller manages to satisfy them or not. Handling constraints thus becomes an
important aspect of regulator design; not only for safety reasons, but also because
it generally holds that operating near constraint boundaries increases performance
[53–55].

2.2.2 Structural Properties
The structural properties of a system are key concepts for understanding the syn-
thesis of controllers with observers and state feedback. They describe how the

2.2 Constrained Linear Systems 15

applied input affects the state vector as well as how the latter shows in the output,
thereby providing means of quantifying both the ability to induce certain behaviour
in the system as well as the ability to reconstruct the state from output measure-
ments [23,56]. Below follow the definitions1 of the structural properties of a system
of the form (2.1).

Definition 2.1 (Controllability). A system is said to be controllable, if for any
pair of states (x, z) there exists an input sequence {u0, u1, . . . , uT −1} such that z
can be reached from x in a finite time T .

Definition 2.2 (Observability). A system is said to be observable, if there exists
a finite T such that the state xT can be uniquely determined through the measure-
ments of the input and output sequences {u0, u1, . . . , uT −1} and {y0, y1, . . . , yT −1}.

A powerful tool for testing a system for controllability and observability is the
Hautus lemma for discrete time systems, see e.g. [58].

Lemma 2.1. A system is controllable, if and only if

rank
[
λI −A B

]
= n, ∀λ ∈ eig(A).

Lemma 2.2. A system is observable, if and only if

rank
[
λI −A

C

]
= n, ∀λ ∈ eig(A).

For a controllable system it holds that all eigenvalues (modes) of A can be
modified by applying state feedback. Similarly, for an observable system it holds
that all modes of A can be modified by applying output feedback. For uncontrollable
(unobservable) systems, there are modes which cannot be modified using feedback.
These are referred to as uncontrollable (unobservable) modes, and it is of interest to
study their stability. The following weaker notions are therefore useful [54,56,59].

Definition 2.3 (Stabilizability, Detectability). A system is stabilizable, if its un-
controllable modes lie within the stability region. It is said to be detectable, if its
unobservable modes lie within the stability region.

The Hautus conditions for stabilizability and detectability are as follows.

Lemma 2.3. A discrete-time system is stabilizable, if and only if

rank
[
λI −A B

]
= n, ∀λ : |λ| ≥ 1. (2.3)

Lemma 2.4. A discrete-time system is detectable, if and only if

rank
[
λI −A

C

]
= n, ∀λ : |λ| ≥ 1. (2.4)

It is easy to see that observability implies stabilizability, just as observability
implies detectability. The reverse implications, however, do not hold.

1Definitions adapted from [23,54,57].

16 Ch.2 Preliminaries

2.2.3 Set Invariance
The concept of set invariance is closely related with safety and feasibility of control
systems. In fact, the existence of control invariant sets is often a fundamental step
for solving the control synthesis problem in the presence of constraints [55,60,61].

In words, a control invariant set is defined as a set of admissible initial states
in the state space for which there exists a control law such that the generated
trajectory is kept within the set. More specifically, the set contains all initial states
whose trajectories does not violate the system constraints. Below follow the more
rigorous definitions from [61].

Definition 2.4 (Control invariant set). A set C ⊂ X is said to be a control invariant
set for the system (2.1) subject to the constraints in (2.2) if

xk ∈ X =⇒ ∃uk such that xk+1 ∈ C.

Definition 2.5 (Maximal control invariant set). The set C∞ ⊂ X is said to be
the maximal control invariant set for the system (2.1) subject to the constraints in
(2.2), if it is control invariant and contains all control invariant sets contained in
X .

From the definition, it follows that the maximal control invariant set is the
largest set for which one can expect any controller to work [61]. An algorithm for
computing C∞ can be found in [61]. The procedure is also provided in Algorithm 1
for the reader’s convenience2.

Algorithm 1 Computation of C∞
1: Ω0 ← X , k ← −1
2: repeat
3: k ← k + 1
4: Ωk+1 ← Pre(Ωk) ∩ Ωk

5: until Ωk+1 = Ωk

6: C∞ ← Ωk+1
7: return C∞

Example 2.2.1. Consider the second order system

xk+1 = Axk + Buk =
[
1 0
1 1

]
xk +

[
2
1

]
uk, (2.5)

subject to the constraints[
−5
−5

]
≤ xk ≤

[
5
5

]
, −1 ≤ uk ≤ 1, ∀k. (2.6)

2The precursor set of a set S is defined as: Pre(S) = {x ∈ Rn : ∃u ∈ U s.t.Ax + Bu ∈ S}.

2.3 Optimal Control Strategies 17

Using Algorithm 1, the related maximal control invariant set is computed as

−0.71 −0.71
−0.89 −0.45
0.71 0.71
0.89 0.45
−1 0
0 −1
1 0
0 1


x ≤



4.24
4.02
2.24
4.02

5
5
5
5


. (2.7)

The set is also depicted in Figure 2.1.

Figure 2.1: The maximal control invariant set, C∞, for the system in (2.5) subject
to the constraints in (2.6).

Remark 2.1. It is important to note that Algorithm 1 will not necessarily termi-
nate in finite time, and is thus not guaranteed to converge to the maximal control
invariant set. In that case, we can define another safety set.

2.3 Optimal Control Strategies

This section provides an introduction to the control principles considered in this
thesis. It begins with a summary of the unconstrained and constrained Linear-
Quadratic Regulator (LQR), followed by a discussion on the principles of Model
Predictive Control (MPC) and how it relates to the LQR. The chapter is concluded
with a section on Explicit Model Predictive Control (eMPC) and an example of the
same.

18 Ch.2 Preliminaries

2.3.1 Linear Quadratic Control
Consider a discrete-time linear time-invariant system evolving in times as

xk+1 = Axk + Buk, (2.8)

where, as before, xk ∈ Rn and uk ∈ Rm denote the state and input vectors at time
k, respectively. Assume that the pair (A, B) is stabilizable.

The infinite-horizon Linear Quadratic (LQ) problem is then defined as the prob-
lem of finding a control input sequence {u0, u1, . . . , u∞} that will steer the system in
(2.8) from some initial state, x0 = x(0), to the origin while minimizing the control
cost function defined as

J∞ =
∞∑

k=0
(x⊤

k Qxk + u⊤
k Ruk). (2.9)

Here, R ≻ 0 is a symmetric cost matrix penalizing the input, and Q ⪰ 0 a symmet-
ric cost matrix penalizing the state error, such that (Q1/2, A) is detectable. The
solution to this problem results in the optimal control law known as the LQR given
by3

u∗
k = −(B⊤P∞B + R)−1BP ∞Axk = −Lxk, (2.10)

where P∞ solves the Discrete Time Algebraic Riccati Equation [56, 61]

P∞ = A⊤P∞A−A⊤P∞B(R + B⊤P∞B)−1B⊤P∞A + Q. (2.11)

The cost function in (2.9) represents a trade-off between the control action and the
control error (distance to the origin). A controller for which Q is set large relative to
R will prioritize reaching the origin as quickly as possible over reducing the control
action, and vice versa. A central aspect of LQR design is choosing appropriate
values of Q and R, also known as tuning, which requires knowledge of the system
under study. A common, practical choice is to set the matrices to be diagonal

Q =

q1 0
. . .

0 qn

 , R =

r1 0
. . .

0 rm

 .

In this way, the diagonal weights will reflect the influence of each individual (squared)
state and input on the total cost [23,54].

The LQR formulation above can be extended to also consider systems subject
to state and input constraints of the form

xk ∈ X (2.12a)
uk ∈ U , (2.12b)

3Reader is referred to [56,61] for derivation.

2.3 Optimal Control Strategies 19

where the sets X ⊆ Rn and U ⊆ Rm are polyhedra. The problem is then reformu-
lated as

arg min
u0:∞

J∞ =
∞∑

k=0
(x⊤

k Qxk + u⊤
k Ruk)

s.t. xk+1 = Axk + Buk, ∀k ∈ Z+

xk ∈ X , ∀k ∈ Z+

uk ∈ U , ∀k ∈ Z+

x0 = x(0),

(2.13)

and is referred to as the infinite-horizon Constrained Linear Quadratic Regulation
(CLQR) problem.

Due to the infinite number of decision variables and constraints included in the
optimization, the CLQR is in general very difficult to solve. There exists some
work on how to address the CLQR directly, including e.g. [62], [63] and [64], but
one often resorts to approximate methods instead. Model predictive control is the
most prevalent approximation scheme to date and is presented in the section below.

2.3.2 Model Predictive Control

Model predictive control is an online strategy for designing an infinite-horizon sub-
optimal controller in a receding horizon fashion described in the following. At each
time instant k, an optimal control input sequence {uk, uk+1, . . . , uk+N} is computed
by solving a constrained optimization problem over a finite-time horizon N . The
first input in the sequence, uk, is then applied to the system and the same procedure
is repeated at the next time instant, k + 1, based on the evolved state to generate
the next control sequence {uk+1, uk+1, . . . , uk+N+1}. Thus, the horizon recedes
over time.

The general MPC problem is formulated as

arg min
u0:N−1

J(x0) = xT
N QN xN +

N−1∑
k=0

(xT
k Qxk + uT

k Ruk)

s.t. xk+1 = Axk + Buk, ∀k ∈ [0, N − 1]
xk ∈ X , ∀k ∈ [0, N − 1]
uk ∈ U , ∀k ∈ [0, N − 1]
xN ∈ Xf,

(2.14)

where x0 is the current state, N the prediction horizon, QN = Q⊤
N ⪰ 0 the terminal

cost matrix, and Xf the terminal state constraints. As with the cost matrices, it
is not obvious how the prediction horizon should be chosen. A short horizon is
preferred for computational simplicity. However, a longer horizon will in general
yield more accurate trajectory predictions.

20 Ch.2 Preliminaries

2.3.2.1 Explicit Model Predictive Control

One considerable disadvantage of MPC is the computational effort required for
solving (2.14) online, which makes MPC challenging for very fast processes [65].
Explicit MPC is a strategy for circumventing this issue by pre-computing the control
law offline using multiparametric programming techniques.

Given a polytopic set X , for each x ∈ X the eMPC computes a piecewise affine
mapping from x to u defined over q regions of X . In this way, the eMPC performs
a characterization of the control law akin to a look-up table: the only computation
required online is then to determine what region the current state is in [65,66].

Unlike the control law of the MPC, the control law of the eMPC becomes ex-
plicitly dependent on x according to

u(x) =


F1x + g1, if H1x ≤ b1

F2x + g2, if H2x ≤ b2
...

Fqx + gq, if Hqx ≤ bq.

(2.15)

Here, Fi and gi are the parameters of the local functions, and Hix ≤ bi denote the
expressions that characterize the different regions of X .

While the eMPC on the one hand reduces the computational burden in terms
of solving for different states, it typically does not scale well with the dimension
of the state due to nature of the function (2.15). The complexity of the solution
further increases with the number of regions q, as this is what dictates the amount
of memory required for storing the functions in (2.14) [65,67].

Example 2.3.1. Consider again the double integrator in (2.5) subject to the con-
straints in (2.6). Let the cost parameters in (2.14) be defined as Q = I, R = 10,
and QN = I, the horizon as N = 3, and the terminal constraints as Xf = R2. Using
the MPT3 [68] toolbox in Matlab to construct the eMPC, one obtains the controller
that consists of the seven regions plotted in Figure 2.2a. The corresponding feedback
law (2.15) is plotted in Figure 2.2b.

(a) The seven regions of the eMPC. (b) The PWA feedback law.

Figure 2.2: Visualization of the computed eMPC in Example 2.3.1.

2.4 System Identification and Estimation 21

2.4 System Identification and Estimation

In Section 2.2, we introduced the use of a set of difference equations4 to model the
behaviour of systems. Such mathematical models may be constructed using one
of two (or the combination of both) approaches: modeling or system identification.
Modeling involves dividing the whole system into subsystems whose properties and
physical characteristics are well understood from earlier empirical work. These sub-
systems are then mathematically combined to form a model of the complete system.
Thus, the procedure of modeling does not necessarily require experimentation on
the actual system, but instead relies heavily on identifying appropriate subsystems
and utilizing existing knowledge about them.

System identification, on the other hand, is directly based on experimentation.
It involves collecting and analyzing input and output data from the physical system
to infer a model. As mentioned in Chapter 1, a system identification procedure
typically involves the following four steps:

(1) Experiment design: designing an experiment to collect data (observations), O,
from the system.

(2) Model selection: choosing a model structure, M, to characterize the system.

(3) Parameter estimation: determining the values of the model structure’s param-
eters that best align with the collected data, using the identification method
I.

(4) Model validation: design a validation procedure to evaluate the accuracy and
reliability of the model.

The process of identifying a model is often iterative, and may involve revising or
adjusting some of the choices during the course of the procedure.

2.4.1 Parameter Estimation

An important part of the identification process is to select a good model structure.
Once a model structure has been selected, it can be defined by a parameter vector
θ ∈ DM ⊂ Rd that represents the unknown quantities of the system. The collection
of these parameterized candidate models is called the model set and is defined as

M∗ = {M(θ) | θ ∈ DM}, (2.16)

where DM is the set of values over which θ ranges in a model structure M. The
identification problem of finding the best model within this set then becomes a
problem of determining or estimating the value of θ that best align with the exper-
imental data.

4We use differential equations to model continuous systems.

22 Ch.2 Preliminaries

There are many established approaches for parameter estimation in literature.
For a comprehensive understanding and a guide on how to apply them in practice,
the book [25] is an excellent resource on the topic that covers a wide range of
methods. In this work, we will not consider any of the traditional estimation
techniques, and interested readers are encouraged to explore external literature
such as [25,47,69] for more details.

2.5 Cooperative System Identification

A common trait of traditional parameter estimators is their data-driven nature.
However, in many real-world applications, the available data often does not accu-
rately represent the underlying distribution or behavior of the system under study.
This can be due to limited sample sizes, biased sampling methods, measurement
errors, or the presence of outliers [50]. Relying on such data can lead to inaccurate
parameter estimation and poor model performance. On the other hand, existing
methods that incorporate prior knowledge into the estimation process also come
with a set of limitations, as determining appropriate priors can be very difficult in
practice.

Correctional Learning is a recently developed off-line framework designed to
address these issues, by providing an alternative approach for incorporating external
or prior knowledge into the estimation process [52]. The framework is structured
around a teacher-student model, where an expert (teacher) agent seeks to assist a
learner (student) agent in its estimation process by transferring its knowledge in
the space of induced probability distributions.

Consider a standard system identification problem. The student collects a se-
quence of N Independent and Identically Distributed (i.i.d.) observations O =
{yk}N

k=1 from the system, where each observation yk belongs to the observation
space Y. Assume that the system can be described by some parameterized model
m0(θ0) ∈ M, where θ0 represents the true model parameters. Each observation is
sampled according to the distribution

yk ∼ p(y | yk−1, . . . , y1; θ0), (2.17)

for k = 1, . . . , N . The student estimates θ0 (the model) by solving the optimization
problem

θ̂ ∈ arg min
θ∈Θ

F (m(θ),O), (2.18)

Here, F (m,O) is a measure of fit of the student’s model m, typically the likelihood-
function of the observed data.

The teacher agent knows the true parameter θ0. However, it might be infeasible
or undesirable for the teacher to directly transfer this knowledge to the student. For
example, the teacher’s information might be too abstract or too complex, or it could
be due to inconsistencies between the two agent’s models or parameterizations, or

2.5 Cooperative System Identification 23

privacy concerns. To overcome this limitation, the two agents operate in the space
of induced probability distributions instead.

Based on the observations O, the student computes an empirical estimate of p
as p̂(y), and finds the optimal parameter estimate by solving

θ̂ ∈ arg min
θ∈Θ

G(p̂, pθ). (2.19)

Here, where G is a distance measure between two probability density functions, and
pθ the distribution induced by the model. The teacher, who knows the true distribu-
tion p0(y) of the data, aims to improve the students estimate p̂, and, consequently,
also θ̂, by intercepting and altering (i.e., correcting) the observations collected by
the student. This results in the modified dataset Õ = {ỹk}N

k=1 that better reflects
the true distribution, along with the corresponding probability estimate p̃. The
goal is to provide the student with information that leads to an altered estimate θ̃
that either lies closer to the true estimate θ0

∥θ̃N − θ0∥ ≤ ∥θ̂N − θ0∥, (2.20)

or converges to the true parameter faster, i.e.,

var(θ̃) < var(θ̂). (2.21)

To model the communication restrictions, the teacher is assigned an intervention
budget, denoted by b, which imposes a constraint on the teacher’s actions. This
budget constraint is expressed as follows:

B(O, Õ) ≤ b. (2.22)

Here, B(·, ·) represents a distance measure between two sets. In the case of discrete
observations, B can be defined as the ℓ1-norm

1
N

N∑
k=1
|yk − ỹk| ≤ b. (2.23)

This formulation implies that the budget restricts the number of samples that the
teacher is allowed to modify.

The goal of any identification problem is to minimize the discrepancy between
the constructed model and the true system. The correctional learning problem can
therefore be formulated as the optimization problem

min
Õ

V (p0, p̃)

s.t. ỹk ∈ Y, ∀ỹk ∈ Õ
B(O, Õ) ≤ b.

(2.24)

24 Ch.2 Preliminaries

Here, V is a statistical distance measure between two probability density functions,
such as the KL-divergence. The first constraint ensures that the modified samples
ỹk remain within the observation space Y, preventing the teacher from arbitrarily
modifying the samples. The second constraint guarantees that the distance between
the original and modified datasets satisfies the specified budget constraint.

2.5.1 Influence of the Budget
For finite distributions with the ℓ1-norm as the distance measure in (2.24), the
following results regarding the errors have been established [52].

The smallest attainable error, as a function of the number of observations N
and the true parameter θ0, is given by

emin(N, θ0) =
∥∥∥∥θ0 −

[θ0N]
N

∥∥∥∥
1

. (2.25)

Here, the notation [·] represents rounding to the closest integer value while adhering
to the constraint 1T θmin = 1, where θmin = [θ0N]

N .
The estimation error is defined as the difference between the corrected param-

eter θ̃ and the true value θ0. It can be expressed as a function of the number of
observations N , the true parameter θ0, the budget b, and the original estimate as

e(N, θ0, b, θ̂) = max
{
∥θ0 − θ̂∥1 −

2b

N
, emin

}
, (2.26)

where emin is defined as in (2.25).

2.6 Neural Networks

This section introduces the reader to the basic concepts of neural networks neces-
sary for understanding this work. It will start off by describing the neurons, the
computing elements of the network, and then move on to discuss different network
structures and the supervised learning paradigm. The chapter ends with an intro-
duction to convex optimization layers, a state-of-the-art network architecture for
integrating differentiable optimization programs in the network structure.

2.6.1 The Neuron
The fundamental building blocks of a neural network are the processing units known
as neurons. A neuron represents a mathematical function that generates an output
signal based on inputs received from other neurons in the network. The neurons
communicate by transmitting signals across their connecting links, each assigned
a weight coefficient, w. In mathematical terms, this implies that the signal going
from a neuron i to a neuron j will be multiplied by the weight wij of the link
connecting the two.

2.6 Neural Networks 25

The operation realized by the neuron is given by

yj = φ

(
l∑

i=1
wijxi + bj

)
, (2.27)

where xi is the input signal coming from the ith neuron, l the number of incom-
ing signals, bj the bias, φ(·) the activation function, and yj the generated neuron
output. Together, the weights and biases form the learnable parameters that are
adjusted by the network during training. A visual representation of a neuron is
provided in Figure 2.3.

x1

x2

...
xl

w1j

w2j

wlj

Σ φ(·) yj

bj

Figure 2.3: Visual representation of a neuron. The link weights are labeled as wij ,
while the bias is denoted as bj . The activation function is denoted by φ(·). Figure
adapted from [70].

2.6.2 Activation Functions
The activation function determines the output of a neuron and plays a fundamental
role in the neural network. The non-linearity in the form of activation functions
appearing in multiple is key to the remarkable performance of neural networks in
many real-world tasks. From (2.27), it is easy to see that by omitting the activation
function, the neural operation is reduced to that of a linear transformation. The
same happens when the activation function is chosen to be linear. The common
practice is therefore to employ non-linear activation functions, as these enable the
integrated network to learn and process more complex data patterns [70–72].

In addition to being non-linear, an activation function should also be differen-
tiable and monotonic. This is because training of neural networks typically proceeds
in the form of backpropagation, which relies on gradients of the network param-
eters. Popular choices include the logistic sigmoid function, tanh and the ReLU
function shown together in Figure 2.4.

The sigmoid is defined as

σ(x) = 1
1 + e−x

, (2.28)

26 Ch.2 Preliminaries

and is typically used in probabilistic classifiers, as it restricts its outputs to lie in
the range [0, 1]. The tanh relates to the sigmoid by tanh(x) = 2σ(2x)− 1 and has
the mathematical form

tanh(x) = ex − e−x

ex + e−x
. (2.29)

Both the sigmoid and the tanh are saturating functions. This means that their
gradients will approach zero for very small and very large values of x. In gradient-
based learning, where the parameter update is proportional to the gradient of some
error or loss function, this phenomenon may induce an issue known as the vanishing
gradient problem. Should it occur, it may prevent the weights from updating and
could thereby stop the network from learning altogether [73–75].

The Rectified Linear Unit (ReLU) function defined as

ReLU(x) =
{

x, x ≥ 0
0, x < 0,

(2.30)

does not suffer from this issue. Its gradient will, however, evaluate to zero for
negative values of x, causing the ReLU to “die” and output zero (0) for all future
inputs5. Nevertheless, because the ReLU function is unbounded, the set of inputs
for which the gradient is nonzero is still larger compared to those of the tanh and
sigmoid. Furthermore, whenever the gradient is nonzero for the ReLU, it is always
one, whereas for the sigmoid and tanh, the gradient lies in the range [0, 1]. This
adds to the computational efficiency of the ReLU.

Another advantage of the ReLU activation is its computational simplicity. As
opposed to the sigmoid and tanh, the ReLU does not involve any exponential oper-
ations in its computation, which makes it significantly more efficient in comparison.
Because of this, the ReLU has become the most popular choice of activation func-
tion in most network-based applications [75–77].

2.6.3 Feed-forward Neural Networks

In its most general form, a neural network is a weighted, directed graph comprised
of neurons ordered into different layers. Depending on the interconnection pattern
of these layers, one distinguishes between the two main network structures (archi-
tectures): Feed-Forward Neural Networks (FFNN) and Recurrent Neural Networks
(RNN).

In a feed-forward neural network, the layers are sequentially connected without
any feedback loops. Each neuron of a particular layer is unidirectionally connected
to the neurons of the subsequent layer, thereby restricting the information to flow
only in the forward direction. The simplest form of a feed-forward network is the
single-layer FFNN consisting only of an input layer and an output layer. The

5This is known as the dying ReLU problem and can be avoided by implementing a leaky
ReLU.

2.6 Neural Networks 27

Figure 2.4: The plot shows three common activation functions: the tanh, sigmoid
and ReLU.

designation “single-layer” stems from the input layer not being considered as a
layer, as it merely feeds the inputs to the output layer without performing any
computation. All processing is thus limited to the output layer.

A more complex feed-forward network is the multi-layer FFNN, which incor-
porates one or more hidden layers in its structure. The hidden layers are inserted
between the input and output layers to induce nonlinearities in the network, which
in turn enables the network to extract higher order features from data [70–72]. It is
known that with a low number of layers the performance typically saturates after
a point, and that increasing the number of layers often adds to the performance.
The general structure of an FFNN is shown in Figure 2.5.

2.6.4 Supervised Learning

Supervised learning is the most common form of learning and refers to paradigms
in which the network is provided a set of labeled input-output pairs to train on.
For a given input from the training set, the network generates an output to be
compared with the known desired output value, using an error metric. This error
metric, or loss function, averaged over all the training samples is then used to train
the network model. That is, the network parameters are chosen to minimize the
loss function.

2.6.5 Backpropagation Algorithm

The backpropagation algorithm is a technique used in supervised learning of feed-
forward networks that utilizes a gradient descent method to minimize a loss function

28 Ch.2 Preliminaries

x1

x2

x3

y1

y2

Figure 2.5: An example of a fully connected FFNN with two hidden layers. The
weights and biases have been omitted for simplicity.

with respect to the network’s parameters. For brevity, this section presents a sim-
plified version in Algorithm 2, while the full mathematical derivation can be found
in [71,72].

Algorithm 2 Backpropagation algorithm (simplified)
1: repeat
2: for (xi, yi) in the training set {(x1, y1), . . . , (xn, yn)} do
3: Apply xi to the network;
4: Propagate xi through the network to obtain the prediction ŷi = f(xi);
5: Compute the loss; Li, by comparing ŷi to yi,
6: Backpropagate Li by computing the gradients, ∇Li, w.r.t. the weights

and biases,
7: Update weights and biases to minimize Li.
8: end for
9: until error is below a specified threshold.

2.6.6 Differentiable Convex Optimization Layers
In certain scenarios, convex objectives are integrated into the neural network ar-
chitecture. In these cases, the process of updating the neural network parameters
requires the computation of gradients of the convex problem. As a result, there
arises a need to transform the convex problems into differentiable ones, so that
backpropagation can be applied for training.

Recent work on neural network architectures has introduced a framework for
embedding differentiable optimization problems as individual layers within a deep,
feed-forward network as a means for introducing domain-specific knowledge to its

2.7 Markov Decision Processes 29

structure. This subsection will give a brief introduction to the cvxpylayers [45],
a Python library for implementing differentiable convex opitmization layers using
CVXPY [78], which is a Python-embedded modeling language for convex optimiza-
tion.

The cvxpylayers requires the optimization program to be constructed by the
grammar Disciplined Parametrized Programming (DPP) introduced in [45]. DPP
can be viewed as a subset of the modeling methodology disciplined convex optimiza-
tion, which is used for constructing convex optimization models. The DPP consists
of a collection of functions with known curvature (affine, convex or concave) and
per-argument monotonicities, and a composition ruleset that will guarantee the
convexity of the constructed program [45,79].

Using DPP to construct the expressions, a disciplined parametrized program
can then be formulated as an optimization problem of the form

arg min
x

f(x, θ)

s.t. gi(x, θ) ≤ g̃i(x, θ), ∀i ∈ [1, m1]
hj(x, θ) = h̃j(x, θ), ∀j ∈ [1, m2].

(2.31)

Here, x ∈ Rn is a variable, θ ∈ Rp is a learnable parameter vector, the gi are
convex, g̃j are concave, and hi and h̃i are affine functions. The parameter θ is
learned to minimize some scalar function of the solution x∗ of (2.31).

The cvxpylayer solves the problem in (2.31) by first canonicalizing it into a cone
program of the form

minimize cT x

s.t. b−Ax ∈ K,
(2.32)

where x ∈ Rn is the variable, K a non-empty, closed and convex cone, and A, b
and c are the matrices and vectors of appropriate sizes denoting the cone problem
data. Next, it calls a cone solver sK, to obtain the solution

x̃∗ = sK(A, b, c), (2.33)

which is mapped to a solution x∗ of the original problem. The solution map S :
Rp → Rn can thus be expressed as

S = R ◦ sK ◦ C, (2.34)

where R is the retriever that maps (2.33) to x∗, and C the canonicalizer. The
derivation of the derivative of (2.34) required for the backpropagation algorithm
has been left out for simplicity, but can be found in [45].

2.7 Markov Decision Processes

In many real-life scenarios, the evolution of a system cannot be predicted with
certainty. This is often observed in phenomena such as stock market prices, the

30 Ch.2 Preliminaries

spread of a disease, and traffic flow. To describe the behaviour of such systems, we
use stochastic processes.

A discrete-time stochastic process is a collection {X(t)}t∈T of random variables
defined on a common probability space. That is, for every time index6 t ∈ T , X(t)
is a random variable that takes on values in the sample space X . The sample space,
also known as the state space, is the set of all possible configurations of the system.
In this thesis, we limit ourselves to finite or countable state spaces, which we denote
as X = {1, . . . , X}. However, it is worth noting that infinite or continuous state
spaces have also been studied in literature.

A stochastic process is said to satisfy the Markov property if the current state
of the system depends only on its immediate previous state. In other words, the
probability of moving into the new state xt+1 is determined solely by the current
state xt. These transition probabilities are typically stored in the transition matrix
P ∈ RX×X , whose elements represent the probabilities of moving between different
states in the system as

[Pt]ij = Pr[xt+1 = j | xt = i, xt−1 = l, . . . , x0 = z]
= Pr[xt+1 = j | xt = i],

(2.35)

where i, j, l, z ∈ X , 0 ≤ [Pt]ij ≤ 1, and P1 = 1.
A Markov chain is fully autonomous, meaning its evolution is independent of

any external inputs. However, real-life scenarios often involve applying different
actions to a system in an attempt to influence its behaviour. A Markov Decision
Process (MDP) is a mathematical framework for modeling such decision-making by
including a decision-maker’s actions in the transition probabilities. By considering
external input, the MDP extends the concept of a Markov chain, transforming it
into a controlled stochastic process.

An MDP is typically characterized by a four-tuple (S,A, P, R), where

• S denotes the state space;

• A denotes the action space containing the set of actions the decision-maker
can apply to the system;

• P denotes the transition probability matrix, and

• R denotes the reward function that captures the desired behaviour of the
system.

At each time step t, the system resides in a certain state st ∈ S. The decision-
maker may choose to perform any action at ∈ A available in st. In the next time
step, the system then responds by evolving into the new state st+1 and providing
the decision-maker with the corresponding reward rt. The new state is determined

6This is a slight abuse of notation. Usually, k is used to denote discrete time in systems and
control. However, to stay consistent with the standard frameworks, we use t instead.

2.8 Optimal Transport 31

by the transition probability matrix, P , which follows a similar structure as in
(2.35) but now incorporates the chosen action:

[Pt(a)]ij = Pr[st+1 = j | st = i, at = a], (2.36)

where i, j ∈ S, and at ∈ A. Note how the Markov property remains satisfied, since
the transition probabilities depends solely on the current state and action.

The goal in an MDP is to find an optimal mapping from the state space to
the action space such that the expected cumulative reward is maximized. That is,
we want find the optimal policy π : S × A → [1, 0] that specifies which action the
decision-maker should apply in state s. The corresponding optimization problem
is formulated as

π∗ ∈ arg max
π

E

[
N∑

t=0
rt(st, at)

∣∣∣ s0 = s

]
, (2.37)

where N is the horizon length.
MDP’s are often solved using dynamic programming techniques, such as value

iteration or policy iteration, which rely on the assumption that the underlying four-
tuple is known.

Remark 2.2 (Notation). To stay coherent with the standard MDP framework, note
that we here made the notational changes: x→ s, u→ a and k → t.

2.8 Optimal Transport

Suppose that we are given a probability measure µ ∈M+(X), which can be inter-
preted as, say, a distribution of sand in X of total mass 1. Assume further that we
wish to transform µ into another probability measure ν ∈ M+(X̃), corresponding
to a different distribution of sand, by “moving” the grains of sand with minimal
transportation cost. The cost of transporting one unit of mass from location x
to location x̃ is quantified by a metric c(x, x̃) on X . To compute the total trans-
portation cost, we must also define a transportation map, which is modelled by a
probability measure τ ∈ M+(X × X̃), with dτ(x, x̃) denoting the amount of mass
transferred from x to x̃. Since we cannot move more mass than what we originally
have, it must hold that the mass moved from one point in µ must be received by ν
and vice versa. In mathematical terms, we express those conditions by∫

X̃
dτ(x, x̃) = dµ(x) and

∫
X

dτ(x, x̃) = dν(x̃), (2.38)

respectively.

32 Ch.2 Preliminaries

The problem can now be posed as the following optimization program, known
as Kantorovich’s optimal transport problem:

min
τ∈M+(X ×X̃)

∫
X ×X̃

c(x, x̃)dτ(x, x̃)

s.t.
∫

x̃∈X̃
dτ(x, x̃) = dµ(x)∫

x∈X
dτ(x, x̃) = dν(x̃).

(2.39)

Here, the double integral in the objective corresponds to the total transportation
cost under the transport plan τ . This problem provides a relaxation of the original
formulation by Monge and has various applications in optimal transport theory.
For more details, the interested reader is referred to [80–82].

Part I

Learning Model Predictive Control

MPC

L(·) Errorx

u

f(x, θ)

Learning

33

Chapter 3

Neural Network Approaches for
Model Predictive Control

One of the challenges in the design of feedback control of safety critical systems is
to ensure that the closed loop system always satisfies a set of given specifications.
This is well understood when using classical control concepts as Proportional In-
tegral Derivative (PID) and Linear Qudratic Regulator (LQR) control. It is less
understood when it comes to constrained Model Predicitve Contol (MPC), which
is usually implemented using online optimization. While MPC has gained signifi-
cant popularity in various industries, the lack of rigorous methods for verification
of MPC often becomes a deterring factor against its widespread adoption, despite
its great potential. This in turn has prompted extensive research efforts in certified
real-time optimization for MPC over the recent years, see e.g. [83] for an overview.

Moreover, the control community has experienced a renewed interest in learning-
based MPC controller design, thanks to the increasing availability of computational
power and advancements in sensing and communication capabilities. Various ma-
chine learning techniques are being readily applied in data-driven adaptions, with
the aim to achieve improved performance, simplified deployment, and a reduced
need for manual controller tuning [17].

In this chapter, our main focus lies in exploring the use of neural networks for
approximating MPC. By leveraging these techniques, we aim to exploit the growing
body of resources in machine learning to address some of the challenges associated
with traditional MPC approaches.

3.1 Introduction

The process of controller identification is an extensively studied research area fo-
cused on estimating a model of a feedback controller from observed input and output
data. Traditionally, this field has primarily dealt with cases where the system and
the controller can be described by linear dynamical models, see e.g. [25]. However,

35

36 Ch.3 Neural Network Approaches for MPC

in recent years, there has been a growing interest in using neural network-based
learning models for identifying constrained MPCs [41–43, 60, 84–86]. Indeed, the
idea of using neural network-based MPC is not new, with early contributions dating
back to [87] and [88].

As detailed in Subsection 2.3.2, the MPC is commonly formulated as a quadratic
cost function subject to linear constraints, which encompass both system dynamics
along with state and input constraints. Finding the optimal solution to such a
constrained quadratic program typically involves identifying the active constraints,
which can be achieved through various methods. See e.g. [89] for results on fast
online MPC implementations. Nevertheless, computing the MPC control law entails
solving an optimization problem at each time step, which could quickly introduce
computational bottlenecks when applied to systems repeatedly.

To overcome this challenge, an alternative approach is to pre-compute the con-
trol law offline using multiparametric programming techniques. This transforms
the problem into specifying a mapping or lookup table in the form of a PWA func-
tion, which, in turn, generates the optimal control law based on the input state.
This approach is known as the eMPC [66, 90], and was previously introduced in
Subsection 2.3.2.1. The characteristic structure of the eMPC has further inspired
the viewing of the MPC as a general learning problem. As a result, a number of
works, mainly employing neural networks, have been proposed recently [41–43,60].

A driving factor behind these approaches is the recent discovery that neural
networks employing Rectified Linear Units (ReLUs) can effectively represent Piece-
Wise Affine (PWA) functions or functions with linear regions [91]. This property
makes such networks well-suited for the MPC learning problem [41], especially
in the context of Explicit Model Predictive Control (eMPC), where the optimal
control law is an affine function of the state vector [65]. Recent work on the topic
demonstrates how to construct a set of ReLU networks to exactly represent an
eMPC control law [84], while another approach explores linking a ReLU network
to an eMPC via multiparametric programming techniques [85].

However, learning-based approaches, particularly those based on neural net-
works, face many challenges both in terms of modeling, training and evaluation.
Therefore, there is a growing need for a standardized framework for treatment of
such approaches from an experimental design point of view. As a response to this,
the first part of this chapter focuses on the following key problems:

Problem 3.1 (Structure of the neural network). We study the training of neural
networks for learning linear MPC. We explore different network structures, ranging
from model-agnostic black box neural networks to architectures that are specifically
designed to include structural information about the MPC problem. This allows us
to compare the performance of structurally-aware networks with completely black
box networks.

Problem 3.2 (Nature of the data generation). Efficiently generating training
data for learning the control law is not trivial, especially when dealing with high-
dimensional systems. Traditional grid-based approaches for sampling the input

3.2 Related Work 37

space would become cumbersome in such cases. Keeping this in mind, we study
the use of an efficient and statistically motivated Hit-and-Run (HAR) sampler that
extends well to higher state dimensions.

Problem 3.3 (Evaluation of performance). Various constrained neural networks
approaches have recently been proposed in the literature for solving the MPC prob-
lem [41, 42, 60]. However, it generally remains unclear as to how these different
structures can be evaluated consistently. Here, we study how different neural net-
work approaches compare in terms of different metrics.

The primary objective of any learning-based approach for MPC is to effectively
learn a mapping from the state to the control input that describes the MPC control
law. In the context of neural network-based methods, this mapping corresponds to
the function learned by the network. Most existing neural network-based learning
approaches typically rely on supervised learning, where the mapping is learned
using only observations of the system’s state and control input. However, like
any learning approach, an MPC mapping learnt in such a manner could perform
poorly when the training data is scarce. In such scenarios, additional structural
information can often be of merit in aiding the training of the network. This
is particularly relevant for learning the eMPC, where the control law is a PWA
function of the state. The gradient of the optimal control law with respect to the
state is then piece-wise constant and contains important structural information for
effective learning. Motivated by this observation, we formulate the central problem
addressed in this chapter:

Problem 3.4. We propose a neural network-based learning approach for MPC that
explicitly leverages structural information in the form of gradient data during the
training process.

Although training data in the form of gradient information is typically unavail-
able or difficult to obtain, the unique structure of the MPC problem, coupled with
recently proposed tools in differentiable convex optimization [44, 78], enable us to
overcome this limitation.

3.2 Related Work

In this section, we will discuss the state-of-the-art in the field at the time this work
was initiated. By understanding the prior state of the field, we can emphasize the
contributions and novelty of our research. At the end of the chapter, we will provide
a brief review of more recent work to highlight the directions in which this research
area has progressed since then.

In the past two decades, several strategies have been proposed for approximating
optimal control laws using learning-based methods. Earlier works, such as [87] and
[88], introduced neural network implementations for non-linear receding-horizon
control problems. These works explored different approaches, with [87] restricting

38 Ch.3 Neural Network Approaches for MPC

their attention to a two-layered sigmoidal feed-forward network for learning optimal
control policies, while [88] proposed a method to directly minimize the control cost,
thereby escaping the need for offline computation of the optimal MPC control
signals.

Following the advances in various machine learning areas, neural network de-
signs have since then evolved to incorporate more complex features. Examples of
such include the ReLU activation function, the Long Short-Term Memory (LSTM)
structure and the two optimization layers OptNet [44] and cxvpylayers [45]. To
some extent, these features each hold some properties akin to those of the MPC
and eMPC, and have as such been explored in more recent work on learning-based
optimal control.

One approach, introduced in [41], makes use of a reinforcement learning tech-
nique to train a ReLU-based deep neural network for approximating the control
law. The authors highlight that by choosing the ReLU as activation, the integrated
network will represent a PWA function that overlaps with the structure of the
eMPC, and thus makes for an attractive choice for synthesizing the controller. An-
other key aspect of their approach is ensuring feasibility and constraint satisfaction
of the generated control inputs. They achieve this by incorporating an orthogonal
projection operation into their network, using Dykstra’s projection algorithm [92]
to project all network outputs onto a safe region defined by the intersection between
the maximal control invariant set and the set of input constraints.

In [43], a similar question is addressed, but with a different approach. Unlike
in [41], the authors do not rely on the system model in their method. Instead,
they incorporate an implicit parametric quadratic program layer1 in their network
architecture and prove that, in combination with two linear layers, it is able to
capture the structure of any linear MPC problem. They also show that the resulting
closed-loop system can be certified for stability a posteriori.

Another interesting factor to consider when learning the MPC is the temporal
dependency between the control actions. The ability to model sequential data is
an inherent trait of a recurrent neural network and is the reason why such models
have already been applied in a variety of MPC settings. Two examples include the
works [93] and [94], which both employ recurrent network models with an LSTM
structure to synthesize MPC controllers.

3.3 Preliminaries

In this section, we provide a brief review of the fundamental MPC problem, eMPC,
and neural networks. A more detailed coverage of these topics can be found in
Chapter 2.

1An OptNet [44] instance.

3.3 Preliminaries 39

3.3.1 Model Predictive Control
Consider a discrete-time linear time-invariant system that evolves in time as

xk+1 = Axk + Buk. (3.1)

Here, xk ∈ Rn and uk ∈ Rm denote the state vector and the control action at
time k, respectively. The matrices A and B correspond to the system dynamics. In
this context, we will study the simplified MPC problem of steering the state of the
system (3.1) from an initial state x0 to the origin by minimizing a control objective.
This objective is subject to state and input constraints, defined as

xk ∈ X , uk ∈ U . (3.2)

Here, X ⊆ Rn and U ⊆ Rm are polyhedra, characterizing the sets of constraints
for the state and input, respectively. These sets define the boundaries within which
the system must operate.

The MPC problem for an infinite time horizon can be formulated as the opti-
mization problem

min
u

∞∑
k=0

xT
k Qxk + uT

k Ruk

s.t. xk+1 = Axk + Buk

xk ∈ X
uk ∈ U
x0 = x̄,

(3.3)

where Q and R positive semi-definite cost matrices. In an unconstrained setting of
the state and input vectors, the solution to (3.3) yields the optimal feedback control
law of the LQR, given by

u∗
k = −Lxk, L = (BT P∞B + R)−1BP ∞A, (3.4)

where P∞ solves the Algebraic Riccati Equation [61].
However, solving the infinite time horizon MPC problem (3.3) is generally very

challenging. Instead, it is common to resort to a finite-horizon MPC approach,
where the following problem is solved at each step

min
{u0,...,uN−1}

J = xT
N QN xN +

N−1∑
k=0

xT
k Qxk + uT

k Ruk

s.t. xk+1 = Axk + Buk

xk ∈ X
uk ∈ U
x0 = x̄.

(3.5)

Here, N denotes the finite time horizon length, and QN the terminal cost matrix.

40 Ch.3 Neural Network Approaches for MPC

3.3.1.1 Explicit MPC

The eMPC is a strategy for circumventing the computational efforts required for
solving the MPC online, by pre-computing the optimal control law offline. Given
a polytopic set X , for each x ∈ X the eMPC computes a PWA mapping from x to
u defined over q regions of X . See Subsection 2.3.2.1 for an example of this.

3.3.2 Satisfaction of Feasibility Constraints
The concept of set invariance plays an important role when it comes to characteriz-
ing the MPC constraints. In fact, set invariance is closely linked with feasibility, as
discussed in [55,60,65]. According to the definition in [61], a set C ⊆ X is considered
a control invariant set for the system (3.1), subject to the constraints (3.2), if

xk ∈ C =⇒ ∃uk s.t. xk+1 ∈ C, ∀k ∈ Z+. (3.6)

In other words, for any initial state in C, there exists a controller that ensures that
all future states remain within C. The maximal control invariant set is then defined
as the control invariant set containing all control invariant sets contained in X , and
is denoted by C∞. For more details, see Subsection 2.2.3. Given that C∞ is a
polytope, it can be expressed as an intersection of halfspaces in H-representation
as

C∞ = {x ∈ Rn | Cxx ≤ dx}. (3.7)

Later in this chapter, we will explore how this set can be used as part of a
projection strategy within neural networks to obtain feasibility guarantees for the
control law. To compute C∞, we use Algorithm 10.2 “Computation of C∞” provided
in [61], along with the accompanying software. It is worth noting, as discussed in
[41], that this algorithm does not come with any termination guarantees. However,
it was found to converge in our experiments.

In Figure 3.1 we plot C∞ for system (3.1) with

A =
[
1 1
0 1

]
, B =

[
0
1

]
, (3.8)

subject to the constraints[
−5
−5

]
≤ xk ≤

[
5
5

]
, −2 ≤ uk ≤ 2. (3.9)

3.3.3 Neural Networks
Neural networks and deep learning approaches have become ubiquitous and can be
found at the core of many modern learning-based techniques [95]. Neural networks
learn a mapping from the input to the output from known training examples. This

3.4 Designing Neural Network Structures 41

Figure 3.1: The maximal control invariant set C∞ computed for system (3.1), with
system and control matrices (3.8), and subject to the constraints (3.9).

is particularly useful when the problem at hand lacks a clear closed-form input-
output relationship or when such a relationship is intractable to work with [72].

Neural networks consists of interconnected processing units known as neurons,
which perform a combination of linear and non-linear transformations. In math-
ematical terms, a neural network f(x) learns a mapping from the input x to the
predicted output ŷ of the form

ŷ = f(x) = φ(WNLφ(WNL−1φ(· · ·φ(W1x + b1) · · ·) + bNL).

Here, φ(·) represents the activation function, and θ = {Wi, bi}NL
i=1 the parameters

(weights and biases) that the network learns during training, with NL denoting
the number of neuron layers. The learning is typically achieved through backpro-
pogation, a procedure that relies on gradients of an error or loss function L(·) with
respect to the network parameters θ. For reasons of computational complexity and
stability, the ReLU is the most commonly employed activation function [72,95]. It
is important to note here that the use of ReLU as the activation function is well-
motivated in the MPC setting due to its piece-wise linear nature [41]. A schematic
of a two-layer neural network is shown in Figure 3.2.

3.4 Designing Neural Network Structures

While the concept of learning-based methods for MPC is not novel, a comprehensive
framework for characterizing such approaches is lacking in literature. This chapter

42 Ch.3 Neural Network Approaches for MPC

xk

...

...

...

...

uk

Figure 3.2: Schematic of a two-layer neural network.

aims to contribute to the development of such a framework by addressing these
aspects, with a specific focus placed on training and evaluation through numerical
experiments. In this section, we explore Problems 3.1, 3.2 and 3.3 outlined in
Section 3.1, using the framework proposed in our preliminary study [96]. More
specifically, we design and study three different neural networks that incorporate
varying degrees of MPC-specific structure. We then evaluate and compare these
networks in terms of two performance metrics. Based on the obtained results,
we identify general performance trends that may serve as a guide in the process of
choosing between the different modes of operation of learning the MPC. In addition,
we also study the use of a well-motivated HAR sampler for efficient data generation.

3.4.1 Characterization of Learning Approaches
As mentioned in Section 3.1, the primary objective of any learning approach for
solving MPC problems is to obtain a meaningful mapping f(x) that, given an initial
state x, produces the control law

û = f(x),

where û is the predicted solution to the MPC. To make a consistent characterization
of any learning approach, two important aspects have to be analyzed:

• the nature of the mapping, and

• the nature of the data, particularly in the context of training and evaluation.

We touch upon these two aspects in relation to the designed network structures
and the data generation in the upcoming sections.

3.4.2 Designing Neural Networks for MPC
In this section, we motivate and detail the construction of different neural network
structures for learning the MPC.

3.4 Designing Neural Network Structures 43

3.4.2.1 Understanding the Nature of the Mapping

Depending on the horizon, the state and input constraints, and the strategy em-
ployed, we have the following common variants of the MPC problem in general:

• LQR, which corresponds to the unconstrained version of the infinite horizon
problem in (3.3);

• Finite or infinite horizon control with constraints on the input and state
vectors;

• eMPC, which is a reformulation of the constrained MPC in terms of control
invariant sets, giving a pre-computed offline lookup table-like characterization
of the control law in terms of the state vector [65];

• Learning-based MPC approaches, typically in the form of neural networks,
which use supervised learning from seen data examples.

Correspondingly, each of these variants produce their own mapping u(x). In the
case of quadratic program-based approaches for constrained MPC, u(x) is obtained
by solving quadratic programs through convex optimization solvers such as the
OSQP [97]. In the next section, it will become clear how these insights influence
our network designs to address the specific characterstics of the MPC problem.

3.4.2.2 Considered Network Structures

As mentioned in Section 3.1, recent work has demonstrated how ReLU-based net-
works can effectively represent PWA functions, such as the eMPC. We therefore let
this structure serve as the basis for our network designs.

However, while ReLU-based networks do exhibit structural similarities with the
eMPC, relying entirely on such a black box approach does not guarantee the gener-
ation of feasible control signals. This is due to the fact that such a strategy requires
the training data to inherently abstract the structure of the underlying MPC prob-
lem without using any explicit domain knowledge. In contrast, approaches like
the one presented in [41] enforce feasibility guarantees by employing a projection
algorithm that utilizes the knowledge of the MPC structure to project any infea-
sible neural network outputs onto a feasible region. This ensures the feasibility of
the subsequent state and control trajectories. Following the same line of thought,
we explore a similar projection strategy by incorporating a state-of-the-art differ-
entiable convex optimization layer as a final layer to two of our networks. More
specifically, we investigate the following network structures:

1. Black Box Neural Network (BBNN): This refers to a black box neural network
that learns solely from input-output samples without MPC-specific informa-
tion. An illustration of this network is provided in Figure 3.2.

44 Ch.3 Neural Network Approaches for MPC

2. Projection Neural Network (PNN): This network incorporates a projection
layer that enforces the feasibility constraints of the MPC [41]. The projection
block is included as a neural network layer, which causes it to directly influence
the network’s learnable parameters. As previously explained, the training of
the neural network relies on backpropagation, which requires the gradient of
the entire network with respect to its parameters. It is therefore necessary
that the projection block is differentiable and admits a gradient operation.
To achieve this, we use an instance of cvxpy-layers [45], a Python library
that offers a CVXPY-based [78] framework for obtaining differentiable convex
layers in PyTorch. A schematic of the PNN is shown in Figure 3.3.

3. LQR-PNN: This network combines the projection layer with an LQR struc-
ture. The LQR block is introduced to enforce stability of the network and
serves as a safeguard against the network producing unstable solutions. Fig-
ure 3.4 illustrates how the outputs from the LQR block and the neural network
are fed into the feasibility projection layer. This structure thus offers a trade-
off between the infinite horizon LQR solution and the learned neural network
solution.

Each of the three networks takes the state vector x as input and generates the
corresponding output mapping û = f(x). The cvxpy-layer realizes the projection
by solving a constrained optimization problem. Following the approach in [41], we
use the H-representations of C∞ and U to describe the constraints as follows

C∞ = {x ∈ Rn | Cxx ≤ dx} (3.10a)
U = {u ∈ Rm | Cuu ≤ du}. (3.10b)

The optimization problem for the projection can then be expressed as

arg min
ûk

∥ũk − ûk∥2
2

s.t. CxBûk ≤ dx − CxAxk

Cuûk ≤ du.

(3.11)

Here, ũk represents the input to the cvxpy-layer, and ûk the resulting predicted
control signal for input xk.

All three networks share the same structure concerning the trainable neuron
layers: one input layer of width n, two hidden layers with a width of 8, and a
fourth layer of width m. An illustration is provided in Fig. 3.2. A ReLU activation
function follows the input layer and both hidden layers, while the last conventional
layer is directly connected to the projection layer2 to allow for any negative values
of û.

2Or, directly interpreted as the predicted output, in case of the BBNN.

3.4 Designing Neural Network Structures 45

xk

...

...

...

...

cvxpy-
layer ûk

ũk

Figure 3.3: The structure of the PNN.

xk

...

...

...

...

+
cvxpy-
layer ûk

ũk

−L

Figure 3.4: The structure of the LQR-PNN.

3.4.3 Data Generation and Training
Data generation and input design pose a significant challenge for most learning-
based approaches, especially in the context of safety-critical control applications.
To take a closer look at this, we start this section with a discussion on the nature
of data and data generation in the context of learning, particularly focusing on the
MPC application. Following that, we present our systematic strategy for effeciently
generating training and test datasets for learning MPC problems.

3.4.3.1 The Nature of Data and Data Generation

One of the aforementioned key aspects in characterizing a learned mapping is its
relation with the available dataset. In the context of training, this dictates how
the sampling of the input space should be performed to ensure that the learning
is meaningful and generalizes well. This aspect is particularly important for many

46 Ch.3 Neural Network Approaches for MPC

real-life applications, such as vehicle control, where access to an extensive and
diverse training dataset is often limited.

In the case of the simple LQR,

u = −Lx,

this poses no real difficulty. Finding the control matrix L from training data is
straightforward, since it requires only a single set of n linearly independent samples
of x and their corresponding values of u.

However, in the case of eMPC, the complexity increases as one needs to sample
a set of n linearly independent points within each region where the control law is
constant. For q such regions, at least n×q samples of x and corresponding u-values
are needed.

Naturally, this issue also applies to neural network-based mappings, raising the
question of how to span the training space. One intuitively reasonable approach is to
uniformly sample the feasible set. To this end, we propose the use of a statistically
motivated Markov Chain Monte Carlo sampling technique that will be introduced
in the following section.

The idea of learning-based MPC is also closely connected to the classical problem
of function estimation from experimental data, dating back to the work of Box
and co-workers on response surfaces [98]. For example, Gaussian processes and
Bayesian optimization offer solid statistical frameworks for function estimation and
input design [99]. In this context, samples are typically chosen by optimizing a so-
called acquisition function, which measures the current uncertainty of the function
estimate. A simple method is uncertainty sampling, where the next sample is taken
where the uncertainty is the highest.

Unfortunately, optimal input design for training neural networks remains less
explored. To gain insight into the approximation properties and generalization
abilities, we need tools that can analyze the error and at the same provide informa-
tion on where to sample new data. Provided that the network is flexible enough,
the maximal error on the training data should be small after training. The chal-
lenge then lies in estimating the error for x outside the training set and sampling
additional x where the error is large.

With this in mind, it is worth noting that we can compute the gradients3 with
respect to x, i.e.,∇f(x) and∇u(x). These gradient computations can be carried out
using CVXPY, as described in [45]. This approach allows us to gather information
about the approximation error in a neighborhood of interesting sample points by
computing the first order approximation

[f(x)− u(x)] ≈ [f(xi)− u(xi)] + [∇f(xi)−∇u(xi)]T (x− xi),

within a neighbourhood where ∥x−xi∥ ≤ ϵ, and where this region does not overlap
with existing samples of x. To generate new training data, one can then identify

3Subgradients can be used where the mappings are non-differentiable.

3.4 Designing Neural Network Structures 47

regions where the approximation error is large. One way is to solve the QP problem

max
x

∥[∇f(xi)−∇u(xi)]T (x− xi)∥

s.t. ∥x− xi∥ ≤ ϵ,

for selected xi, to obtain a measure where to take new samples. This demonstrates
that it is possible to develop a well-motivated and systematic framework for the
analysis and evaluation of learning-based MPC.

3.4.3.2 Sampling

In our data generation process, we construct training and test datasets comprising
of state and control input pairs (x, u). We follow the same procedure for generating
both sets. We start by sampling a set of states S = {x1 . . . , xNs}, followed by
solving for the corresponding optimal control input ui for each xi ∈ S using OSQP
[97]. To sample from C∞, we employ a Hit-and-Run (HAR) sampler, which is
a Markov chain Monte Carlo method for sampling uniformly from convex shapes
[100]. Essentially, starting from any point in the convex set, the sampler generates a
set of points (states) S by walking random distances ∆ in randomly generated (unit)
directions. The steps involved in the procedure are detailed in Algorithm 3. We
have chosen this approach because it guarantees that the generated data cover the
feasibility region in a reasonably uniform manner [100,101]. This, in turn, ensures
that the network has observed training samples that span the entire feasible set on
an average, thereby aiding its ability to generalize.

In Figure 3.5, we present a collection of 1000 points sampled using the HAR
sampler from the set C∞ displayed in Figure 3.1.

3.4.3.3 Training Procedure

Once the training dataset D = {(xi, ui)}Ns
i=1 has been generated, we proceed the

network training using a supervised learning approach. During the training, we
optimize the network parameters θ by minimizing a loss function L(θ). In this
work, we employ the Mean Squared Error (MSE):

L(θ) = 1
Ns

Ns∑
i=1

(f(xi, θ)− ui)2. (3.12)

In order to increase the training speed, we split the data into smaller subsets
(mini-batches) and compute the MSE loss (3.12) for each batch. We then use the
gradient descent-based Adam optimizer [102] to backpropagate the loss and update
the parameters θ following each batch. Once all the mini-batches have been iterated
over, one training epoch is completed. We train the networks for as many epochs
required to reach convergence.

48 Ch.3 Neural Network Approaches for MPC

Algorithm 3 Hit-and-Run Sampler
1: procedure Hit-and-Run (C∞, Ns)
2: Pick random point x ∈ C∞ = {x ∈ Rn | Cxx ≤ dx}
3: S ← {x}
4: for i = 1, . . . , Ns − 1 do
5: ∆i ←∞
6: Generate random unit direction δi

7: for (c, d) in (Cx, dx) do

8: ∆← d− c · x
c · δi

9: if ∆ > 0 then ▷ To ensure right direction
10: ∆i ← min(∆i, ∆)
11: end if
12: end for
13: ∆i ← drawn from U[0, ∆i)
14: x← x + ∆iδi

15: S ← S ∪ {x}
16: end for
17: return S
18: end procedure

Figure 3.5: HAR sampling of 1000 points from the set C∞ displayed in Figure 3.1.

3.4 Designing Neural Network Structures 49

3.4.4 Evaluation and Comparison of the Networks
We now consider the application of the proposed networks on three MPC examples.
We evaluate the different network architectures in terms of two performance metrics:

1. The Normalized Mean Square Error (NMSE) which is defined as

NMSE =
E
[
∥û− u∥2

2
]

E [∥u∥2
2] ; (3.13)

2. The normalized control cost Jn, defined as the control cost J in (3.5) normal-
ized by xT

0 x0:

Jn =
xT

N QN xN +
∑N−1

k=0
[
xT

k Qxk + uT
k Ruk

]
xT

0 x0
, (3.14)

where x0 is the initial state of the trajectory.

Both metrics are evaluated on test data, previously unseen by the networks during
training. The NMSE helps evaluate the control law predicted by the network with
respect to the ground truth, whereas the control cost measures how well the control
law is in terms of minimizing the control objective: the smaller the J , the better
the control achieved.

3.4.4.1 Double integrator

We first consider the example of a two-dimensional state vector with a scalar input
under constraints. Despite being relatively low-dimensional, such a scenario occurs
regularly in many real-life control applications. For example, in the case of a
simplified bicycle model employed in autonomous vehicles at Scania [103], the state
model is given by

xk+1 =
[

cos(νkκk) sin(νkκk)
−κ cos(νkκk) sin(νkκk)

]
xk +

[
(1− cos(νkκk)/κ2

k

sin(νkκk)/κk

]
uk.

Here, the state vector xk consists of the direction coordinate and yaw, and ν and
κ are parameters proportional to the velocity and curvature of the vehicle, respec-
tively. The control objective matrices are usually of the form Q = I and a scalar
non-negative R. Though the most general models are time-varying (as seen from the
state matrices), it specializes to a time-invariant MPC problem when the velocity
and curvature of the vehicle are kept constant (that is, when νk and κk are constant
over time) [103]. This motivates us to consider first the case of a two-dimensional
MPC problem.

We consider a two-dimensional double integrator system specified as follows [61]:

A =
[
1 1
0 1

]
, B =

[
0
1

]
, (3.15)

50 Ch.3 Neural Network Approaches for MPC

subject to the constraints[
−5
−5

]
≤ xk ≤

[
5
5

]
, −2 ≤ uk ≤ 2, (3.16)

and with cost parameters

QN = Q =
[
1 0
0 1

]
, R = 10, N = 3. (3.17)

We generate training and testing data by sampling states from C∞ for the system
(3.15) subject to (3.16) using Algorithm 3, followed by solving for the optimal
controls using OSQP with cost parameters (3.17).

In Figure 3.6, we plot the NMSE in dB as a function of the size of the training
dataset Ns. In Figure 3.7, we show the normalized control cost Jn computed for 100
trajectories for the different network-generated control laws. For the NMSE evalu-
ation, we use a test dataset of 500 samples. For the control cost evaluation, we use
a dataset of 1000 samples to train the networks. The initial states {x(1)

0 , . . . , x
(100)
0 }

of the trajectories are sampled from C∞ using Algorithm 3.

Figure 3.6: NMSE-comparison of the network-generated control laws in the 2D-
example.

3.4.4.2 4-Dimensional system

In our second example we consider a 4-dimensional system from [41]

A =


0.7 −0.1 0 0
0.2 −0.5 0.1 0
0 0.1 0.1 0

0.5 0 0.5 0.5

 , B =


0 0.1

0.1 1
0.1 0
0 0

 , (3.18)

3.4 Designing Neural Network Structures 51

Figure 3.7: Comparison of the control costs computed for the three network-
generated control laws in the 2D example.

subject to the constraints
−6
−6
−1
−0.5

 ≤ xk ≤


6
6
1

0.5

 ,

[
−5
−5

]
≤ uk ≤

[
5
5

]
, (3.19)

and with cost parameters

QN = Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , R =
[
1 0
0 1

]
, N = 10. (3.20)

We generate training and testing data by sampling states from C∞ for the system
(3.18) subject to (3.19) using Algorithm 3, followed by solving for the optimal
controls using OSQP with cost parameters (3.20).

3.4.5 Section Summary
In this section, we have presented a framework for offline training and evaluation
of neural network approaches for MPC. The core concept involves approximating
the MPC mapping from state to control input using constrained ReLU-based neu-
ral networks that include a projection layer. This structure is well-motivated by
recent works, including [60] and [41], both which have successfully demonstrated
the capabilities of deep ReLU-networks in representing continuous PWA functions

52 Ch.3 Neural Network Approaches for MPC

Figure 3.8: NMSE-comparison of the network-generated control laws in the 4D
example.

Figure 3.9: Comparison of the control costs computed for the three network-
generated control laws in the 4D example.

3.5 Learning MPC from Gradient Data 53

on polyhedra, such as the eMPC. The role of the projection layer is to guarantee
recursive feasibility and asymptotic stability.

We studied and compared three different network structures: the MPC-agnostic
BBNN, the MPC-aware PNN, and the LQR-PNN, which employs an LQR-block as
a safety measure. Based on our experimental result, we draw the conclusion that
incorporating structural MPC information into the network significantly increases
its performance.

In the upcoming section, we shift our focus towards the main contribution of
this chapter. Here, we explore leveraging gradient information as an alternative
strategy to gain structural information about the MPC without having to explicitly
incorporate it into the network’s neuronal structure. We demonstrate how the use
of gradient data can enhance the training process, especially in scenarios where
training data is limited, leading to improved control laws.

3.5 Learning MPC from Gradient Data

In recent years, there has been a growing interest in using gradient information for
solving MPC problems. This includes the work of [86] on infinite-horizon differen-
tiable MPC and its connections to imitation learning4. By incorporating gradient
information, learning algorithms can gain additional structural information about
the underlying MPC problem, which may be useful during the training process.

In this section, we consider the problem of learning a linear MPC using gradient
data. More specifically, we consider the following problem:

Problem 3.5 (Learning models from gradient data). We design and evaluate al-
gorithms to train ReLU-based neural networks for learning the MPC. The networks
are trained on input and output data (xi, ui) together with the corresponding gradi-
ent data

u′
i = ∂u(x)

∂x

∣∣∣∣
x=xi

.

We aim to demonstrate that incorporating gradient information in the training pro-
cess can significantly reduce the amount of training data required to achieve high
accuracy.

To illustrate the potential of using gradient data, we provide a motivating ex-
ample of a general identification problem.

Example 3.5.1 (Identification using Gradient Data). Consider the following scalar
linear feedback example with measurements

uk = l1xk + l2 + ek, ∀k ∈ [1, Ns].
4Imitation learning is a subfield of machine learning where an agent learns to perform a task

by observing demonstrations provided by an expert.

54 Ch.3 Neural Network Approaches for MPC

with control signal uk, scalar state signal xk and additive white zero mean Gaussian
noise ek with variance σ2

e . Assume that it is possible to measure the derivative of
u with respect to x,

u′
k = l1 + vk, ∀k ∈ [1, Ns],

where vk is white zero mean Gaussian distributed noise with variance σ2
v. The

maximum likelihood estimate of l1 and l2 given the data {xk, uk, u′
k}, k ∈ [1, Ns], is

found by solving the least squares problem

V (l1, l2) =
Ns∑

k=1

[uk − l1xk − l2]2
σ2

e

+ [u′
k − l1]2

σ2
v

.

The error covariance matrix of the least squares estimate (l̂1, l̂2)T equals (see [25]),

σ2
e

Ns

[
1

Ns

Ns∑
k=1

[
(x2

k + σ2
e/σ2

v) xk

xk 1

]]−1

For the choice xk = 1 it is not possible to estimate l1 and l2 individually without
the extra gradient data. In this case, the estimation error covariance matrix equals

1
Ns

[
σ2

v −σ2
v

−σ2
v (σ2

e + σ2
v)

]
This result can also be found by analyzing

uk − u′
k = b2 + ek − vk.

The least squares estimate of l2 is just the average of this difference signal. Notice
that the variance of l̂1 is lower than the variance of l̂2, which is expected given the
extra information on l1 and the added noises when estimating l2. Hence, gradient
information can be crucial in terms of estimation quality for low input excitation.

3.5.1 Gradient-based Learning

As before, let x0 ∈ Rn denote the initial state vector x(0), and u0 ∈ Rm the
corresponding optimal control signal u(0). Further, let u′ ∈ Rm×n denote the true
gradient of the optimal control with respect to x. Consider that we are given a
training set of Ns samples of triplets as

{(xi, ui, u′
i)}Ns

i=1, (3.21)

where the xi’s denote the initial states, ui the corresponding optimal control law,
and u′

i the corresponding gradient. Note that the subscript i denotes the ith sample

3.5 Learning MPC from Gradient Data 55

and not the time index. We also define the three sets

Dx ={x1, · · · , xNs} (3.22a)
Du ={u1, · · · , uNs} (3.22b)
Du′ ={u′

1, · · · , u′
Ns
}. (3.22c)

Keeping the same underlying network structure as before, our goal is now to train
a black box ReLU-based network to predict the optimal control law using gradient
information. The network learns the mapping

f(x, θ) : Rn ×Rd → Rm,

where, again, θ ∈ Rd denotes all the learnable weights and biases of the neural
network. Note that for this approach we omit the projection layer, relying solely
on the structural information provided by the added gradient data.

The training of a neural network typically involves minimizing only the model
error

Ns∑
i=1
∥ui − f(xi, θ)∥2

2 ,

which is the same loss function we employed in (3.12). However, it is well known
that such a training procedure makes the network data-hungry, and that its per-
formance often suffers when the number of training observations is limited. This is
often the case in many control problems, given the generally very large state spaces
the controllers operate in. As seen from our discussions in Section 3.4, explicitly
incorporating structural information can significantly improve the network training
in such scenarios. Assuming that training samples are randomly drawn from the
feasible state space, with ideally one sample per region of the space, a uniform
distribution of samples would give the network information about a large portion
of the feasible set. In such cases, we expect that that including gradient data in the
training dataset would improve the learning process, even with small sample sizes,
thanks to the incorporation of the additional structural information the gradient
data provides.

In light of this, we propose to train the neural network on the adjusted loss
function L(θ) : Dx × Du × Du′ → R, which has been extended to explicitly use
gradient information. Specifically, we aim to learn f(x, θ) by minimizing

L(θ) =
Ns∑
i=1

∥ui − f(xi, θ)∥2
2 + γ

∥∥∥∥∥u′
i −

∂f(x, θ)
∂x

∣∣∣∣
x=xi

∥∥∥∥∥
2

2

 . (3.23)

Here, the first term represents the model error, the second term represents the
goodness of fit for the gradients, and γ > 0 denotes the weight coefficient penalizing

56 Ch.3 Neural Network Approaches for MPC

the gradient error5. Our approach thus represents a trade-off between a completely
data-driven and structurally aware MPC solver. An illustration of this network is
provided in Figure 3.10. In contrast, a regular neural network-based MPC solver
that relies solely on the model error during training is agnostic to this information
and must abstract such structure from the training samples.

3.5.1.1 Computing Gradients of the MPC and eMPC

We note that our approach requires the value of the true gradients of the MPC
problem evaluated at a given x. As we later detail in Subsection 3.5.2, we rely
on OptNet [44] and cvxpylayers [45], both which offer frameworks for modelling
convex problems amenable to mathematical operations.

Regarding the eMPC, we note that, given a polytopic set X , the eMPC computes
for each x ∈ X PWA mapping u = u(x) defined over q regions of X . Obtaining
the true gradients in this context is thus straightforward since the gradients are
also PWA constant. We use the MPT3 toolbox [68] in Matlab to perform these
computations.

x

...

...

...

...

f(x, θ)

∂f
∂x

f ′(x, θ)

Figure 3.10: The structure of the proposed neural network.

3.5.2 Data Generation and Training

We follow a similar approach for generating the training data as described in Sub-
section 3.4.3. That is, we start by sampling the feasible space C∞ using the HAR-
sampler in Algorithm 3. The corresponding optimal control inputs and gradient
sets, Du and Du′ , are then obtained from the eMPC formulation computed using

5We note that the ReLU is strictly not a globally differentiable function, as it has an analyti-
cally computable gradient at all values except at origin. The gradient of the ReLU is equal to zero
or one, corresponding to negative and positive values of the argument. Consequently, the gradient
∂f(x, θ)/∂x is not defined globally. Nevertheless, given that an exact zero is rarely encountered
in practice, depending on whether the value of the argument is close to zero from the left side or
the right side, appropriate ReLU gradient values are employed in computing the gradient of the
neural network.

3.5 Learning MPC from Gradient Data 57

the MPT3 [68] toolbox in Matlab. We use the same strategy to generate test data
with the difference that it does not contain gradient data. For higher-dimensional
problems, for which the eMPC might be difficult to compute, the data must be
generated from the implicit MPC. In this case, the gradient information may be
obtained by using either a stand-alone instance of OptNet [44] or cvxpylayers [45].

Once the training and test datasets are generated, we again employ a supervised
learning scheme to train the network on a dataset D = {(xi, ui, u′

i)} of input-output
pairs. During the training, we learn for the network parameters by minimizing
the loss function L(θ) defined in (3.23) with respect to θ. We again perform the
training over mini-batches of five training samples and compute the training loss
function (3.23) for each mini-batch. We then use the gradient descent-based Adam
optimizer [102] to backpropagate the loss and update the parameters θ following
each batch. Once all the mini-batches have been iterated over, one training epoch
is completed. We train the networks until L(θ) is reduced to 0.01 or for a maximum
of 50000 epochs.

3.5.3 Performance Evaluation
We now consider the application of the proposed concepts on a set of networks
with different weight coefficients γ, trained on MPC problems for a two-dimensional
system. All the networks in the set are comprised of an input layer of size n, two
hidden layers of eight neurons each, and an output layer of size m. We evaluate the
networks in terms of the NMSE defined in (3.13) and the normalized control cost
defined (3.14). While we illustrate our approach on an eMPC, the algorithm also
extends to more general MPC problems.

Remark 3.1. Note that the gradient information is not required during the test
phase, and is used only in the training of the neural network. The networks are
therefore not evaluated in terms of the gradient prediction.

3.5.4 Two-Dimensional system
We consider the same example as before, featuring a two-dimensional state vector
with a scalar input under constraints. We repeat the definition for the reader’s
convenience:

A =
[
1 1
0 1

]
, B =

[
0
1

]
, (3.24)

subject to the constraints[
−5
−5

]
≤ xk ≤

[
5
5

]
, −1 ≤ uk ≤ 1, (3.25)

and with cost parameters

QN = Q =
[
1 0
0 1

]
, R = 10, N = 3. (3.26)

58 Ch.3 Neural Network Approaches for MPC

Table 3.1: Evaluation of the NMSE and control cost.

NMSE [dB] J̃n
Set γ = 0 γ = 1 γ = 0 γ = 1
S(25) -23.4 -26.2 6.0764 6.0700
S(50) -25.7 -38.5 6.0603 6.0450
S(100) -27.3 -43.6 6.0474 6.0347
MPT3 - 6.0345

We generate training and test data by first sampling states from C∞ for the system
(3.24) subject to (3.25) using Algorithm 3. We then solve for the optimal controls
and corresponding gradients using MPT3 with cost parameters given by (3.26).

In our experimental setup we consider three sets of ten neural networks for two
values of the weight coefficient γ ∈ {0, 1}. For each set of networks we (pseudo)
randomly generate 10 sets of training data, one for each network in the set. The
first set of networks is trained using 25 samples, the second set using 50 samples,
and the third set using 100 samples. We use S(25), S(50) and S(100) to denote the
three network sets.

For the NMSE evaluation, we use a test dataset of 100 samples. For the control
cost evaluation, we sample a set of 100 initial states from C∞ using Algorithm 3.
Starting from these, we then simulate the networks in closed loop for N = 3 time
steps to generate trajectories.

The results from the NMSE and control cost evaluation are presented in Ta-
ble 3.1. The NMSE is shown in dB averaged over the ten trained networks in each
network set, and the control cost is averaged over 100 trajectories and over the
10 networks in each set. We denote the average as J̃n. For reference, the control
cost obtained from simulating the true eMPC is also included. We see that, on
average, γ = 1 results in the lowest NMSE as well as the lowest control cost for
each network set. Figure 3.11 shows the absolute control error for a single network
trained on 1000 samples and tested on 300 samples. Similar to what we observed
in Table 3.1, we obtain the lowest test error for γ = 1. These results suggest that
including gradient information during the training phase improves the performance
of the network. From a theoretical point of view, the choice of γ should not be
so important since we do not have measurement noise. Notice that the we only
evaluate the NMSE in the control mapping and not in its gradient.

Remark 3.2. As we pointed out before, we do not employ a projection strategy for
ensuring constraint satisfaction.

3.6 Section Summary 59

(a) Control error surface for γ = 0. (b) Control error surface for γ = 1.

Figure 3.11: The control error surfaces for γ ∈ {0, 1} when a single network has
been trained on 1000 samples and tested on 300 samples.

3.6 Section Summary

In this section, we have explored the effectiveness of using gradient data to in-
corporate structural information into the process of learning the MPC. We have
used MPT3 [68] and PyTorch [104] to implement this framework. The numeri-
cal experiments suggest that the gradients carries important information that im-
proves the neural network training, resulting in better predicted control laws. It
should be noted that we do not assume any specific model information, other than
from (x, u, u′), which means our approach is not restricted to eMPC or even time-
invariant MPC problems.

3.7 Chapter Conclusion

We conclude this chapter by exploring the latest research and advancements in the
field that have emerged following the publications of the studies upon which this
thesis is based. By doing so, we aim to provide valuable insights into the recent
progress made in the field and to identify new research directions that have surfaced
since the completion of this study.

3.8 Recent Advances

Learning-based MPC is an actively researched field that has witnessed significant
recent advancements. One particular area of focus has been on finding alternative
methods to ensure feasibility without relying on projection-based techniques. This
is mainly motivated by the potential computational slowdown introduced by the
additional optimization step involved in the projection, as well as by the challenges

60 Ch.3 Neural Network Approaches for MPC

in computing control invariant sets for general non-linear systems. Another key
focus is on incorporating physical priors into the learning algorithms.

In the recent paper [105], a novel strategy for learning MPC with linear dy-
namics and constraints is proposed. The authors draw inspiration from two-phase
interior point methods commonly used in convex optimization problems. Specif-
ically, in phase one, the authors employ a simple function to obtain a feasible
starting point. In phase two, the original problem is solved using a neural network
architecture capable of encoding arbitrary polytopic constraints to enforce safety,
thereby providing a projection-free feasibility guarantee.

Another explored direction in safety filters involves the use of control Lyapunov
functions (CLFs) and control barrier functions (CLBs) to enforce stability and
feasibility. In [106], the authors present a method that simultaneously searches for
both the optimal control policy and a CLF certificate to support its soundness.
A similar approach is taken in [107], where the authors propose training a neural
Lyapunov function in conjunction with a neural control policy. Other works, such
as [108] and [109], develop learning frameworks integrated with CBFs. See [110] for
an introductory survey.

Physics-informed machine learning (PIML) is another technique that has been
applied for learning MPC. Recent advances have resulted in various approaches
for integrating PIML and exploiting physical priors within MPC. These methods
demonstrate how learnt PIML models can effectively replace the dynamics within
the MPC optimization formulation to implicitly leverage physical priors through
an efficient surrogate model. For an overview of the topic, see [111].

In the context of non-linear MPC, [112] propose a learning strategy based on
safety-augmented neural networks. Their approach utilize a neural network to
compute the complete input sequence of the MPC and verifies its feasibility on-
line. As a safety measure, they compare the network-generated sequence to a
candidate sequence computed using standard MPC techniques. If the network-
predicted inputs are deemed unsafe or infeasible, or if they result in a higher control
cost compared to the candidate, the candidate is applied instead.

Part II

Cooperative System Identification

HOWEVER, THE DATA ANDY OBSERVES
MIGHT BE UNREPRESENTATIVE OF THE
TRUE UNDERLYING DISTRIBUTION

FOR HIS FIRST TASK, ANDY HAS BEEN
ASKED TO ESTIMATE THE PROBABILITY FOR
TAILS FROM A SEQUENCE OF COIN FLIPS

SO, WE DEVELOPED A FRAMEWORK BASED
ON A TEACHER-STUDENT MODEL, TO HELP
AGENTS LIKE ANDY IN THEIR ESTIMATION
PROCESSES

WITH THE TEACHER’S HELP, ANDY’S
ESTIMATE IS IMPROVED

WITHOUT THE TEACHER’S HELP, ANDY’S
ESTIMATE IS PRONE TO LARGE ERROR

COOPERATIVE ESTIMATION

LET ME CORRECT
THAT FOR YOU!

መ𝜃 = 𝑝 𝑇 = 0.75

MEET ANDY THE AGENT. HE IS A STUDENT
RESEARCHER AT A SYSTEM IDENTIFICATION
LAB

HMMM… ෨𝜃 = 𝑝(𝑇) = 0.5

Heads Tails

Heads Tails

This comic strip has been designed using assets from Freepik.com

61

Chapter 4

Online Correctional Learning

The majority of control strategies rely heavily on accurate models of the underlying
system they aim to control. The quality of these models are crucial for drawing
conclusions about the controller’s performance on the real system. However, ob-
taining a good model can often be time-consuming, costly, and in some cases even
impractical. For example, building and estimating a model for an industrial plant
has been reported as one of the most expensive aspects of the control synthesis
process [113].

In this chapter, we introduce online Correctional Learning as an extension of
the batch correctional learning framework presented in Section 2.5. Correctional
learning provides a cooperative strategy for improving parameter estimation in sys-
tem identification problems by incorporating expert knowledge into the estimation
process. In the online setting, the helping expert determines the optimal presen-
tation of the observed data to the estimating agent at each time step. This online
approach enables immediate action and on-demand decision-making, which is par-
ticularly attractive in real-life settings where data is typically acquired sequentially.

4.1 Introduction

Parameter estimation is the process of determining a model’s parameter values
from observed data. The values of these parameters hold significant importance as
they have a direct impact on the distribution of the data generated by the modeled
system. Therefore, estimation theory stands as a well-researched topic with several
established methods, see e.g. [25]. The interest in the subject is widespread with
applications to be found in various domains, including the process industries, con-
trol applications, as well as in the research of biological functions and systems [47].
Popular estimation methods range from the conventional maximum likelihood and
Bayesian inference methods, to more recent learning-based methods.

As alluded to above, the system identification process often proves very time-
consuming and expensive. In addition, the estimation process is prone to large error

63

64 Ch.4 Online Correctional Learning

when the observed data fail to accurately represent the underlying distribution, as
discussed in Section 2.5. For instance, a recent study found that commercially
available facial analysis algorithms showed higher error rates for darker-skinned
individuals and women [51], which could be linked to unrepresentative training
data.

Correctional learning is a recently developed framework that may be used to ad-
dress these issues [52]. The framework arises from the idea of cooperative (learning)
problems, i.e., settings in which two or more agents work together towards a com-
mon goal. The framework is structured around a teacher-student model, where an
expert (teacher) agent seeks to assist a learner (student) agent in its estimation pro-
cess. This strategy draws inspiration from cooperative teacher-student paradigms
in the machine learning-literature, such as learning from demonstration [114] and
imitation learning [115], where an expert agent (teacher) helps a learning agent
(student) by demonstrating optimal policies to improve convergence.

In correctional learning, the teacher’s goal is to modify (correct) the collected
observations, based on which the student forms its estimation. See Figure 4.1 for
an illustration of this. Correctional learning can thus be viewed as a means for
finding an optimal mapping from the original observations to a modified sequence
that minimizes the student’s estimation error.

Beyond its applications in control and estimation, the correctional learning
framework extends its utility to many traditional learning settings, such as aiding
policy learning in reinforcement learning, manual output-error correction of ma-
chine learning models, cooperative learning for task performance, estimating user
preferences and ratings, and more. In addition, the correctional learning framework
may serve as a tool for diversifying information presented to users, thereby combat-
ing issues like echo chambers, confirmation bias, and the spread of misinformation
in social media and search engines. In the finance sector, our framework might find
itself useful for improving an investor’s market state predictions for stock portfolio
allocation.

For many of these domains, however, the need for immediate (online) action
becomes imperative as observations arrive sequentially. This underscores the ne-
cessity for a learning process that can adapt and update quickly. Therefore, this
chapter presents the concept of an online correctional learning framework. In this
setting, the teacher must decide at each time step whether to modify the current
observation or not, while adhering to a budget constraint. To account for the
the stochastic nature of incoming observations, we use a Markov Decision Process
(MDP) to model the decision-making process.

The chapter’s main contributions can be summarized as follows:

• Firstly, it establishes a theoretical bound on the improvement induced by the
teacher.

• Secondly, it formulates an MDP for the online correctional learning frame-
work.

4.1 Introduction 65

• Thirdly, it demonstrates the framework through two numerical experiments.
• Lastly, it compares the proposed online framework with the original batch

framework.

System
θ0

+ Student
(Estimation algorithm)

Teacher
θ0, yk, b

O Õ θ̂ → θ̃

Correction

original
observations

corrected
observations estimate

Figure 4.1: Schematic representation of the correctional learning framework.

4.1.1 Related work

Learning from experts is widely studied problem in machine learning. Learning from
demonstrations [114] and imitation learning [115] are two closely related paradigms
where a robot learns from observing the behavior of an expert. In corrective feed-
back, on the other hand, the expert provides corrections to the robot’s actions to
improve its learning process. This is contrast to correctional learning, where the
corrections are made to the data that the robot learns from.

By viewing our framework as a means for customizing a dataset to better suit
a specific learning task, we find similarities with other techniques and statistics.
Feature selection [116] is one such example, where the aim is to find the most in-
formative and relevant features to improve learning. Similar to our correctional
learning framework, this family of methods has seen a shift from batch to on-
line techniques [117], offering efficient and scalable machine learning algorithms for
large-scale applications.

Our work also aligns with the field of input design for system identification
[118, 119], where input signals are designed to ensure a certain model accuracy.
Active learning is another related topic, in which the learner queries the teacher for
desired labels to guide the learning process [120].

Another area of relevance is counterfactual explanations [121], a branch within
explainable artificial intelligence that employs feature importance to explain how
small perturbations in input data affect the output of machine learning models.

66 Ch.4 Online Correctional Learning

The notion of learning with side information [122] also bears relevance, as it en-
tails providing additional information to the learner in its learning process. Aside
from machine learning applications, this topic is also studied within the realm of
information theory, particularly in connection to communication problems [123].

4.2 Batch Correctional Learning

For the reader’s convenience, this section will revisit the concept of batch correc-
tional learning by providing a short summary of the key points of Section 2.5.

Correctional learning is a framework designed to address cooperative system
identification problems. The framework is based on a teacher-student model, where
an expert (teacher) agent assists a learner (student) agent in the process of esti-
mating unknown system parameters.

The student collects information in the form of N i.i.d. observations O =
{yk}N

k=1, where each observation yk belong to the observation space Y. Using
this observed data, the student estimates the underlying data-generating distribu-
tion p as p̂. Based on this estimated distribution, the student further estimates the
unknown system parameters θ as θ̂.

Due to various constraints, the teacher is restricted from directly communicating
the true parameter value θ0 to the student. Instead, the agents operate within
the space of induced probability distributions. The teacher, who also knows the
true distribution p0 of the data, aims to improve the students estimate p̂, and,
consequently, θ̂, by correcting the observations collected by the student. This leads
to a modified dataset Õ = {ỹk}N

k=1 that better reflects the true distribution, along
with the corresponding probability estimate p̃. The goal is to provide the student
with information that brings the student’s altered estimate closer to the true value
or enables faster convergence.

The communication restrictions between the two agents are modeled by a budget
constraint, characterized by the teacher’s intervention budget b and some distance
(or cost) measure c between two sets as

c(O, Õ) ≤ b. (4.1)

Essentially, the budget constraint limits the number of samples that the teacher
can modify.

The goal of the teacher is to minimize the discrepancy between the student’s
estimated model and the true system. The offline (batch) correctional learning
problem can therefore be formulated as the optimization problem

min
Õ

V (p0, p̃)

s.t. ỹk ∈ Y, ∀ ỹk ∈ Õ,

c(O, Õ) ≤ b.

(4.2)

4.3 Correctional Learning Bounds for Discrete Systems 67

Here, V is a statistical distance measure between two probability density func-
tions, such as the KL-divergence. The objective is to find the modified dataset Õ
that reduces the discrepancy between the true distribution p0 and the corrected
distribution p̃, while satisfying the constraints.

In [52], it was demonstrated that the resulting set Õ of corrected observations
was optimal in the case of binomial data, and the reduction in variance of the cor-
rected estimate compared to the original estimate was quantified. In this chapter,
we extend the framework by formulating an MDP to address the problem in an
online setting across various applications.

4.3 Correctional Learning Bounds for Discrete Systems

In this section, we analyse the effectiveness of the teacher in helping the student
when the observations are discrete. We will consider the mean values of two se-
quences of observations: the original sequence and the modified sequence. The
measure of the teacher’s effectiveness will be based on how much the variance of
the corrected estimate decreases, which reflects a reduction in the estimation error.
The following theorem establishes a relationship between the estimates of the mean
values and quantifies the decrease in variance for the altered estimate.

Theorem 4.1 (Variance decrease of the altered estimate). Let X1, . . . , XN be i.i.d.
random variables taking values in the set {0, 1, . . . , M − 1}, with a mean of µ. We
denote the sum of these variables by Y = X1 + · · ·+XN . Let b ∈ {0, 1, . . . , N}, and

Ỹ = arg min
Z∈{0,...,N}:|Y −Z|≤b

|Z −Nµ|. (4.3)

Then,

var(Ỹ /N) ≤M2 exp
(
− 2b2

NM2

)
. (4.4)

Let us further assume that Xi ∼ U({0, . . . , M−1}). This assumption is not crucial,
but provides a special case that is easier to understand. Then,

var(Ỹ /N])
var(Y/N) ≤

6M

5M + 1 exp
(
− 2b2

NM2

)
. (4.5)

The proof of Theorem 4.1 can be found in Appendix 4.A. Essentially, the theo-
rem provides an upper bound on the decrease in variance of the student’s estimate
achieved by the help of the teacher, given a budget b. It implies the following:

i) The teacher’s ability to improve the student’s learning increases with a larger
budget;

68 Ch.4 Online Correctional Learning

ii) For a fixed budget b, the improvement becomes less significant as the number
of observations N grows. This is reasonable, since the average deviation of
Y/N around µ is of order O(1/

√
N), while the improvement achieved with the

help of the teacher can be at most b/N ;

iii) For a fixed budget b and sample size N , the improvement degrades as the
number of possible outcomes M increases. This is because the variance of
Y/N increases with M , making it increasingly challenging for a teacher to
compensate for “bad” samples.

Having established the potential improvement of the student’s estimation process
in a discrete setting, we will now propose a framework for the teacher to achieve
this by correcting the observations in real-time.

4.4 Online Correctional Learning

We now present our main contribution of this chapter: a framework for computing
the optimal online policy for the teacher agent. Unlike the batch case, where all
observations are available upfront, the online setting considers more realistic sce-
narios in which observations are obtained sequentially. In this setting, the teacher
has to decide, at each time step, whether or not to change the current sample and,
if so, what to change it into.

4.4.1 Formulation of the Markov Decision Process

To address the online problem, we develop an MDP framework that represents the
teacher’s optimal policy. In this setting, the student samples discrete observations
yk ∈ {0, 1, . . . , M − 1} = Y from a system, with the goal of estimating its true
parameters θ0.

As detailed in Section 2.7, an MDP is characterized by a four-tuple (S,A, P, R),
where S denotes the state space, A the action space, P the transition probability
matrix, and R the reward function. For the correctional learning problem, we define
the MDP as follows:

States: In the online setting, the teacher requires specific information at each time
step to be able to make a decision effectively, namely:

i) the observed frequency of each outcome y ∈ Y, which will provide insight
into the current empirical distribution;

ii) the remaining intervention budget, which will guide the teacher’s assess-
ment of whether changing an observation is worth it or not;

iii) the current observation.

4.4 Online Correctional Learning 69

In light of this, we represent the state at time k by the three-tuple s =
(xk, bk, yk). Here, xk is an M × 1 vector containing the observed frequencies
of each outcome until time k, bk ∈ N0 represents the remaining budget at
time k, and yk is the observation received at time k.
The number of states, denoted by card(S), is finite and upper bounded by
NM+1b. However, due to the constraint

M−1∑
m=0

[x]m ≤ N, (4.6)

which ensures that the sum of all unique observations is less than or equal to
N , we can derive a tighter upper bound for the number of states as

card(S) ≤ card(x)bN. (4.7)

Here, card(x) represents the number of possible observed frequency vectors
and can be computed by using the concept of multisets coefficients. It is given
by

card(x) =
N∑

n=1

((
M

n

))
=

N∑
n=1

M(M + 1) . . . (M + n− 1)
n! , (4.8)

which counts the numbers of ways to choose N elements with repetition from
a set of M elements.

Terminal states: The states where all N observations have been received, i.e.,
where

M−1∑
m=0

[x]m = N. (4.9)

Actions: The teacher can choose to either keep the current observation, yk, or
change it into another outcome ỹk ∈ Y. The number of actions is thus
card(A) = M .

Reward function: Non-terminal states are assigned a zero reward. In the ter-
minal states, the reward is set to be inversely proportional to the estimation
error resulting from the teacher’s corrections.

Transition probabilities: The state evolution depends on the action taken by
the teacher at a given state s. However, regardless of the action, the first
element of the next state depends solely on the probability of the upcoming
observation, denoted by p(yk+1), where

∑
y∈Y p(y) = 1. Depending on the

chosen action, the state evolution varies as follows:

70 Ch.4 Online Correctional Learning

• If the teacher keeps the current observation yk, the remaining budget is
not affected, and so the state evolves as

s = (xk, bk, yk) keep yk−−−−−−→ s′ = (xk+1, bk, yk+1), (4.10)

with probability p(yk+1). Here, [xk+1]yk+1 is updated as [xk+1]yk+1 =
[xk]yk+1 + 1. This reflects adding 1 to the entry in the vector that corre-
sponds to the observed frequency of the outcome yk+1. We express this
evolution in terms of a conditional probability as

Pr[(xk+1, b, yk+1) | (xk, b, yk), “keep yk”] = p(yk+1). (4.11)

• If the teacher instead chooses to change the observation into ỹk, the state
will instead evolve as

(xk, bk, yk) change into ỹk−−−−−−−−−−→ (xk+1, bk − 1, yk+1), (4.12)

with probability p(yk+1). Here, the elements of the state are updated as
◦ [xk+1]ỹk

= [xk]ỹk
+1, reflecting the addition of the modified outcome

at time k.
◦ [xk+1]yk

= [xk]yk
− 1, reflecting the removal of the original outcome

at time k.
◦ [xk+1]yk+1 = [xk]yk

+ 1, reflecting the addition of the new sample
observed at time k + 1.

We express this evolution in terms of a conditional probability as

Pr[(xk+1, b− 1, yk+1) | (xk, b, yk), “change into ỹk”] = p(yk+1). (4.13)

Note how the budget and the total count of observed outcomes is ad-
justed to account for the correcting action.

Budget constraint: The budget constraint is enforced by assigning an infinitely
negative reward to transitions into states where the remaining budget would
result in bk+1 < 0.

To summarize, the MDP is defined as follows:

States: s = (xk, bk, yk)
Actions: a = {keep yk, change to ỹk}
Time-horizon: N

Reward function: − ∥θ̃N − θ0∥1

Constraint: number of corrections ≤ b

Transition probabilities: see (4.11) and (4.13).

(4.14)

4.4 Online Correctional Learning 71

Remark 4.1. Note that the chosen formulation of the states and actions satisfies
the Markov property.

The optimal policy for the online correctional learning problem, as described
the MDP in (4.14), can be obtained using dynamic programming [124]. It is worth
noting that this framework can be adapted to different scenarios by adjusting the
reward function to align with the student’s specific goals for the task at hand. The
framework can also be extended to handle continuous observations by discretizing
the observation space and changing the constraint to the total amount of correction∑N

k=1|yk − ỹk| ≤ b.
To further clarify the defined framework, let us consider a simple example that

illustrates the transition probabilities of the MDP.

Example 4.4.1 (Transition probabilities). Consider the correctional learning setup
with observation space Y = {A, B, C}, where each outcome is equally likely to be
observed. Assume that up until now the individual outcomes have been observed 4,5
and 6 times, respectively, and that the teacher has a remaining budget of b = 4.
Assume that the current observation is an A. Then, we are currently residing in
state

s =
([

4 5 6
]T

, 4, A
)

. (4.15)

Now, depending on the choice of action, we consider a total of 9 transition proba-
bilities, three for the “keep” action and six for the “correct” action. If the teacher
decides to keep the current observation, the state will evolve into one of the three
following states with equal probability (p = 1/3):

s =
([

4 5 6
]T

, 4, A
)

keep A−−−−−→



s′ =
([

5 5 6
]T

, 4, A

)
s′ =

([
4 6 6

]T

, 4, B

)
s′ =

([
4 5 7

]T

, 4, C

) . (4.16)

If the teacher instead decides to change the observed A into a B, the state will
evolve into one of the three following state with equal probability:

s =
([

4 5 6
]T

, 4, A
)

A → B−−−−−→



s′ =
([

4 6 6
]T

, 3, A

)
s′ =

([
3 7 6

]T

, 3, B

)
s′ =

([
3 6 7

]T

, 3, C

) . (4.17)

The state evolution follows the same pattern as in (4.17) if the teacher decides to
change the observed A into a C.

72 Ch.4 Online Correctional Learning

4.5 Numerical Experiments

In this section, we evaluate the effectiveness of the proposed framework by demon-
strating significant improvements in the student’s learning when using a teacher.
First, we consider the task of computing the mean of multinomial and binomial
data. These examples allow us to derive explicit solutions for both the batch and
online setting and analyze the inner workings of the framework. We also apply the
framework to a biological parameter estimation problem to showcase its applicabil-
ity to more complex scenarios. The simulations were performed using Python 3.7
on a 1.90 GHz CPU.

4.5.1 Results for Binomial Data

In these experiments, we sample observations yk ∈ Y = {0, 1} according to a
Bernoulli distribution

θ0 = p0(yk = 1) = 1− p0(yk = 0), (4.18)

with the true parameter set to θ0 = 0.5. We perform the algorithm over 50 exper-
iments and with N = 10, and compare our results with the batch case presentedd
in [52].

Figure 4.2 illustrates the outcomes of the optimal online correctional learning
policy obtained from the MDP in (4.14) for a binomial setting. One advantage of
exploring this case, is that we can prove the optimality of the policy learned by the
teacher, as stated in Section 4.4. This can be seen from the fact that the error of
the student’s estimate, when provided with the corrected sequence of observations
(shown in orange in the figure), always equals the minimum achievable error for the
original sequence (depicted in black). The exact expression for this error is given
by (2.26), repeated here for convenience

e(N, θ0, b, θ̂) = max
{
∥θ0 − θ̂∥1 −

2b

N
, emin

}
. (4.19)

The term emin represents the minimum attainable error as defined in (2.25):

emin(N, θ0) =
∥∥∥∥θ0 −

[θ0N]
N

∥∥∥∥
1

. (4.20)

Here, the notation [·] without subscript means rounding to the nearest integer,
subject to the constraint 1T θmin = 1, where θmin = [θ0N]

N . Note that the error (4.19)
is never greater than the error associated with the original sequence of observations
(shown in blue in the figure).

By analyzing the policy values obtained using the dynamic programming al-
gorithm, we find that the teacher consistently chooses the optimal policy given

4.5 Numerical Experiments 73

by

µ∗ =
{

ak = keep yk, if bk ≤ 0 or [x]yk
≤
[
[θ0]yk

N
]

ak = change into ỹk = 1− yk, otherwise.
(4.21)

This policy coincides with the policy computed using batch correctional learning
[52]. The teacher’s strategy is to delay spending the budget for as long as possible,
only correcting a sample when there is an excess of one particular outcome. For
example, consider the results shown in Figure 4.2 that correspond to the corrected
sequence {1, 1, 0, 1, 1, 1, 0, 0, 0, 1}. In this case, the teacher decided to change the
underlined value, which was originally a 1, into a 0 regardless the value of the next
incoming sample. This finding is in contrast to the multinomial case, which will be
discussed in the following subsection, where a specific outcome must be chosen for
correction.

Figure 4.2: The figure shows the student’s estimation error in two scenarios: with
the help of the teacher (in orange) and without the help of the teacher (in blue).
The orange line coincides with the black curve, which represents the theoretical best
estimate for that particular situation, as given by (4.19) with b = 1 and N = 10. As
the budget b increases, the orange and black curves converge towards the minimum
error emin defined in (4.23).

4.5.2 Results for Multinomial data

We now consider the outcomes yk ∈ Y = {0, . . . , M − 1} to be sampled i.i.d. from
a multinomial distribution, which is a generalization of the binomial distribution.
Figure 4.3 illustrates the results of the proposed MDP for performing correctional
learning in an online setting. The figure shows the student’s estimation error based

74 Ch.4 Online Correctional Learning

on the original observation sequence (without help from the teacher) in blue, and
the estimation error based on the corrected sequence (with help from the teacher)
in orange. We compute the estimates θ as the mean of the observations:

[θ]i = 1
N

N∑
k=1

I(yk = i). (4.22)

In this case, we assume that an observation is randomly sampled N = 5 times from
a multinomial distribution with the true parameter vector θ0 = [0.4, 0.3, 0.3] over
50 experiments.

As opposed to the binomial case, we cannot derive a closed-form solution for the
minimum attainable error. In the multinomial case, this error is given by the batch
error, which can be computed using (8) in [52] with the ℓ1-norm in the objective
function. However, the minimum error independent of θ̂ and b can be computed as
follows:

emin(N, θ0) =
∥∥∥∥θ0 −

[θ0N]
N

∥∥∥∥
1

= 0.2, (4.23)

which is achieved by θ∗ = [0.4; 0.4; 0.2] or [0.4; 0.2; 0.4]. The notation [·] should be
interpreted in the same way as defined in (4.20).

Intuitively, one would expect the teacher’s optimal policy to be to delay spend-
ing its budget for as long as possible. In the binomial case, the optimal online
policy learned is given by (4.21), which coincides with the policy computed using
batch correctional learning. In the multinomial case, the optimal policies differ
only a limited number of scenarios when unexpected samples with low rewards are
obtained. Note that in experiment 11 (indicated by an arrow in the figure), the
altered estimate θ̃ is worse than the original θ̂ (corresponding to b = 0). In that
experiment, the teacher chose to perform the following correction

{1, 2, 0, 2, ?} → {1, 2, 0, 0, ?}, (4.24)

that is, changing the fourth observation of a 2 into a 0. This is because this yieled
a larger expected value. In this scenario, receiving a 1 or a 2 at time step k = 5
had a high probability and maximum reward, but the less likely observation, 0, was
received instead.

Figure 4.4 shows that, as expected, the variance of the estimate decreases as
the number of observations increases. However, as the budget of the teacher in-
creases, the variance is further decreased. This result illustrates the conclusions
from Theorem 4.1.

4.5.3 Biological Parameter Estimation

Biological internal models have played a significant role in exploring and validat-
ing neuroscientific theories. For instance, they have helped in understanding the

4.5 Numerical Experiments 75

Figure 4.3: The figure illustrates the estimation errors from 50 separate experi-
ments. It is evident that the teacher’s policy significantly reduces the error, making
the online scenario approach the performance observed in the batch case.

Figure 4.4: The variance of the estimate decreases with increasing b. The case b = 0
corresponds to when the teacher cannot assist the student.

cerebellum’s involvement in motor control [125], and for predicting and treating
neurological diseases [126].

In [127], Lourenço successfully apply this online correctional learning framework
to estimate biological neural parameters by observing the behaviour of biological
agents, such as animals and humans. However, it should be noted that this contri-
bution falls outside the scope of this thesis and has therefore been omitted here. The
interested reader is referred to the original publication [127] for the experimental
setup and results.

4.5.4 Other Applications

The two previous examples demonstrate how the framework can be applied to
situations involving observations sampled from a system or actions performed by

76 Ch.4 Online Correctional Learning

an agent. These settings extend to a large variety of problems, including assisted
language learning or improved hypothesis testing, and bring together a variety of
fields such as input design and active learning. When training neural networks,
for example, correcting the inputs could be compared to input design methods
presented in Section 4.1.1. For reinforcement learning tasks, a teacher could use
online correctional learning to accelerate the learning of the student in real time.
The framework can also be easily adopted to an adversarial setting, where the
teacher finds the perturbation of the observations that maximizes the impact on
the student’s estimate – e.g. data poisoning [45, Section 6.1].

4.6 Chapter Summary

In this chapter, we extended the concept of correctional learning to an online setting.
Specifically, we explored how the teacher can modify the student’s observed data
in real-time while operating under a budget constraint, aiming to improve the
student’s learning process. We derived a theoretical upper bound on the reduction
in variance of the student’s estimation error when the teacher provides assistance.
We formulated an MDP to model the process and used dynamic programming to
find the optimal correctional learning policy for an online setting.

We demonstrated the effectiveness of our approach through two examples. We
showed the improvement in estimation when employing binomial and multinomial
data, as depicted in Figures 4.2 and 4.4. Additionally, although outside the scope
of this thesis, the framework has been applied to a biological parameter estimation
scenario, highlighting its success in more complex settings, as demonstrated in the
work [127].

Appendix - Chapter 4

4.A Bounding the Decrease in Variance

Let us first present two known lemmas used to solve Theorem 4.1.

Lemma 4.1. Let X be a non-negative random variable (r.v.). Then,

E[X] =
∫ ∞

0
P (X ≥ τ)dτ.

Proof. Let F be the CDF of X, i.e., F (τ) = P (X ≤ τ). Then, by integration by
parts

E[X] =
∫ ∞

0
τdF (τ) = −

∫ ∞

0
τd[1− F (τ)︸ ︷︷ ︸

=P (X>τ)

]

= −τ [1− F (τ)]
∣∣∣∣∞
τ=0

+
∫ ∞

0
d[1− F (τ)︸ ︷︷ ︸

=P (X>τ)

]

=
∫ ∞

0
P (X > τ)dτ.

Note that P (X ≥ τ) = P (X > τ) + P (X = τ), where P (X = τ) > 0 for at most a
countable number of values of τ , so∫ ∞

0
P (X = τ)dτ = 0

and
E[X] =

∫ ∞

0
P (X ≥ τ)dτ.

Lemma 4.2. Let X be a r.v., and λ a constant. Then,

E[(X − λ)2] =
∫ ∞

0
P (|X − λ| ≥

√
τ)dτ.

77

78 Ch.4 Online Correctional Learning

Proof. Use Lemma 4.1 with X replaced by (X − λ)2.

Let us now restate Theorem 4.1 and prove it in three parts.

Theorem 4.1. Let X1, . . . , XN be i.i.d. r.v.’s in {0, 1, . . . , M − 1} with mean µ,
and Y = X1 + · · ·+ XN . Let b ∈ {0, 1, . . . , N}, and

Ỹ = arg min
{Z∈{0,...,N}:|Y −Z|≤b}

|Z −Nµ|.

Then, var(Ỹ /N) ≤M2 exp
(
− 2b2

NM2

)
. Let us further assume that Xi ∼ U({0, . . . , M − 1})†.

Then,

var(Ỹ /N)
var(Y/N) ≤

6M

5M + 1 exp
(
− 2b2

NM2

)
.

Proof. Let us start by computing var(Ỹ). Using Hoeffding’s inequality, we have
that

P (|Ỹ −Nµ| ≥
√

τ) = P (Ỹ ≥ Nµ +
√

τ) + P (Ỹ ≤ Nµ−
√

τ)
= P (Y ≥ Nµ +

√
τ + b) + P (Y ≤ Nµ−

√
τ − b)

≤ 2 exp
(
−2(
√

τ + b)2

NM2

)
.

(4.25)

Therefore, from Lemma 4.2,

var(Ỹ) = E[(X − λ)2] ≤ 2
∫ ∞

0
exp

(
−2(
√

τ + b)2

NM2

)
dτ

= 2
∫ ∞

0
exp

(
− 2u2

NM2

)
· 2(u− b)du

= 4
∫ ∞

0
u exp

(
− 2u2

NM2

)
du− 4b

∫ ∞

0
exp

(
− 2u2

NM2

)
du

≤ 4
∫ ∞

2b2
NM2

NM2

4 e−vdv = NM2 exp
(
− 2b2

NM2

)
.

(4.26)

†This assumption is not crucial, but provides a special case that is easier to understand.

4.A Bounding the Decrease in Variance 79

Let us now compute var(Y). If Xi ∼ U({1, . . . , M − 1}), then

var(Y) =
M∑

k=0

(
k − M

2

)2 1
M + 1

= 1
M + 1

M∑
k=0

(k2 − kM + M2)

= 1
M + 1

(
M2(M + 1)−M

M(M + 1)
2 + 1

6M(M + 1)(2M + 1)
)

= M2 − M2

2 + 1
6M(2M + 1) = 5M2 + M

6 .

(4.27)

Finally, we conclude that

var(Ỹ /N)
var(Y/N) ≤

M2 exp
(
− 2b2

NM2

)
5M2+M

6
= 6M

5M + 1 exp
(
− 2b2

NM2

)
. (4.28)

Chapter 5

Optimal Transport for
Correctional Learning

In the previous chapter, we introduced online correctional learning as an effec-
tive approach for parameter estimation in system identification problems. In this
chapter, we return to the offline setting and generalize the original formulation
by incorporating tools from optimal transport. This generalization improves the
framework by enabling the estimation of more complex parameters, and makes it
more versatile by accommodating multiple intervention strategies for the teacher.

5.1 Introduction

Correctional learning has shown promising results in both offline and online settings,
as demonstrated in [52] and Chapter 4, respectively. Nevertheless, the framework
still suffers from some limitations. First of all, the derived performance guarantees
hold only for simple systems. To describe real-world phenomena, however, one
typically requires more complex distributions. For example, a Gaussian distribution
can be used to describe biological data such as the heights of people. To model the
probability of failure of an appliance, we can use a Weibull distribution. Another
disadvantage is that the teacher’s policy follows explicitly from the solution, leaving
no room for alternative intervention strategies to be considered.

In this chapter, we introduce an alternative approach to correctional learn-
ing using tools from optimal transport [80]. Optimal transport is a mathematical
framework concerned with finding the most efficient way to transport mass from one
location to another, according to some cost function. Historically, optimal trans-
port has been widely used in finance and logistics [128], but recent advances have
made it an increasingly popular tool in fields such as systems, control and estima-
tion [82,129]. In machine learning, optimal transport has found use in a number of
applications, including shape reconstruction [130], multi-label classification [131],
and brain decoding [132]. Moreover, recent work in robotics demonstrates how

81

82 Ch.5 Optimal Transport for Correctional Learning

optimal transport can be applied to mapping problems to enable robots to operate
in new environments [133], and for policy fusion in reinforcement learning to speed
up the process of a robot learning a new task [134].

In the context of correctional learning, we note that the optimal corrections
can be viewed as a transportation of probability mass from an initial distribution
into a target distribution. Furthermore, by assuming that the estimator depends
on the samples only through their empirical measure, we can pose the correctional
learning problem as an optimization program in terms of distribution functions –
i.e., as an optimal transport problem. In contrast to [52] and our online approach
in Chapter 4, this novel formulation considers the samples implicitly through their
distribution, which not only enables the estimation of more complex parameters,
but also allows for the consideration of alternative intervention strategies.

The main contributions of this chapter are:

• A generalized correctional learning framework: we leverage the principles of
optimal transport and propose a novel formulation of correctional learning.
With this new framework, we can expand the range of applications to consider
more sophisticated tasks that involve complex systems.

• Multiple teacher policies: in standard learning settings, a teacher agent may
exhibit several intervention strategies. We show how our new formulation
allows for the consideration of multiple teacher policies to fit different tasks.

• Evaluation of performance: we demonstrate the benefits of our optimal-
transport approach by applying the framework on three different test cases.
Specifically, we show how the framework can be used to estimate the parame-
ters of more complex distributions such as the Gaussian and the Weibull. We
also apply the framework to update a robot’s reward function in an inverse
reinforcement learning setting.

5.1.1 Related Work
In the context of system identification and estimation, our framework can be placed
around other works that also use tools from optimal transport. For example, in [46],
the authors use optimal transport for state tracking of linear ensembles. More
specifically, they propose an optimal-transport approach for estimating the states
of multiple subsystems based on their joint output. Other related works include
[135], where they propose an optimal transport formulation of the ensemble Kalman
filter, and [136], where the authors study the use of optimal transport distances as
objective functions for parameter estimation in dynamical systems.

Beyond system identification, optimal transport is being increasingly applied to
problems in the fields of data science and machine learning. While this work may
not fall under the learning category in the stricter sense, its connection to this area
is still worth pointing out. For brevity, we will omit further discussion on this, and
instead point the interested reader to [137] for an excellent overview of the topic.

5.2 Preliminaries 83

5.2 Preliminaries

In this section, we provide a short summary of the correctional learning formulation
discussed in Section 2.5, followed by a brief introduction to optimal transport.

5.2.1 Correctional Learning

Consider a model of some data-generating system parameterized by the unknown
parameter θ ∈ Θ. Let the true system correspond to the value θ0. In a standard
parameter estimation setting, a learner (student) agent aims to estimate θ0 as θ̂,
based on a sequence of observations sampled from the system, O = {y1, . . . , yN},
distributed according to pN

0 ∈ M+(YN), where yk ∈ Y ⊆ Rd, and (Y,B) is a
measurable space. That is,

θ̂ = f(O) = f(y1, . . . , yN), (5.1)

where f : YN → Θ is some estimator function.
In the correctional learning framework, an expert (teacher) agent is introduced

to help the the student in its estimation process. The teacher may do so by modi-
fying the original observation sequence O, into a sequence Õ that better represents
the true characteristics of the system. The modified sequence is then passed on to
the student, who forms the altered estimate θ̃.

However, utilizing expert knowledge might be expensive or limited. The number
of allowed interventions might also be restricted for privacy preserving reasons –
the more observations the teacher changes, the more likely it is to be discovered.
To account for this, the teacher is constrained to not exceed a certain intervention
budget b. If c : YN ×YN → R+ denotes a distance measure between two sequences
of N elements, then the teacher must satisfy

c(O, Õ) ≤ b. (5.2)

The cost may be chosen to be any distance metric, e.g. the ℓ1-norm for discrete
observations.

The goal of the teacher agent is to find the optimal modified sequence that
minimizes the student’s estimation error

V (θ0, θ̃) = ∥θ0 − θ̃∥. (5.3)

where |·| is a norm on Θ.
Depending on the setting, this problem can be posed and solved in different

ways: see Section 2.5 and Chapter 4 for correctional learning in a batch setting
and online setting, respectively. A schematic view of a general correctional learning
framework is provided in Figure 5.2.1.

84 Ch.5 Optimal Transport for Correctional Learning

System
θ0

+ Student
(Estimation algorithm)

Teacher
θ0, yk, b

O Õ θ̂ → θ̃

Correction

original
observations

corrected
observations estimate

Figure 5.2.1: A schematic view of the correctional learning framework. The teacher
knows the true parameter value θ0 and the original samples yk. The teacher modifies
the original sequence of observations O into Õ by changing at most b samples.

5.2.2 Optimal Transport

Optimal transport is a mathematical framework for finding the most cost-efficient
way of transporting (probability) mass from one location to another. Assume,
for example, that we have a probability measure µ ∈ M+(X) that we wish to
transform into another probability measure ν ∈M+(X̃), by “moving” small chunks
of probability mass with minimal transportation cost.

The cost of transporting one unit of probability mass from location x to location
x̃ is quantified by a metric τ(x, x̃) on X . To compute the total transportation cost,
we first define a transportation map τ ∈ M+(X × X̃), where dτ(x, x̃) denotes
the amount of mass transferred from x to x̃. The objective is to find the optimal
transportation map τ that minimizes the total cost. This can be achieved by solving
the optimal transport problem

min
τ∈M+(X ×X̃)

∫
X ×X̃

τ(x, x̃)dτ(x, x̃)

s.t.
∫

x̃∈X̃
dτ(x, x̃) = dµ(x),∫

x∈X
dτ(x, x̃) = dν(x̃).

(5.4)

Here, the two constraints ensure that we do not move more mass than we originally
have.

5.3 Correctional Learning as an Optimal Transport Problem 85

5.3 Correctional Learning as an Optimal Transport
Problem

In this section we present the main contribution of this chapter: an optimal trans-
port formulation of the original batch correctional learning problem detailed in
Section 2.5. We demonstrate that by using optimal transport, we are able to create
a more general framework that enables the estimation of more complex parameters.

5.3.1 General Problem Formulation
Recall the problem setup of correctional learning in Section 5.2.1. In order to
establish its connections with optimal transport, we now reframe the formulation
in a more general context, emphasizing its relationship with optimal transport.

Assume that the data-generating system is permutation-invariant, or exchange-
able, in the sense that the distribution p0 of the samples O it generates does not
change if the samples in O are permuted (in a deterministic manner). It is then
natural to consider estimators that are also permutation-invariant, i.e., that can be
described as some function of the samples’ empirical measure:

θ̂N (y1, . . . , yN) = J(p̂(y1, . . . , yN)), (5.5)

where p̂ : YN →M+(Y) is the empirical measure of the samples, defined as

(p̂(y1, . . . , yN))(A) :=
N∑

k=1

1
N
1{yk = A}, A ∈ B. (5.6)

The function J : M+(Y)→ Θ is a fixed function (i.e., independent of N), which we
will later assume to be Fréchet-differentiable.

Recall that the samples can be perturbed by the teacher before they reach the
student. In the batch setting, the teacher has access to all of the original samples
O before perturbing them into Õ = {ỹ1, . . . , ỹN}, where ỹk ∈ Ỹ ⊆ Rd. The teacher
is subject to a budget constraint, namely

N∑
k=1

c(yk, ỹk) ≤ b. (5.7)

The goal of the teacher is still to modify the original sequence O, subject to (5.7),
in order to minimize the estimation error

∥θ0 − θ̃∥, (5.8)

where θ̃ is the altered estimate based on Õ.
Since the estimator in (5.5) depends on the samples only through their empirical

distribution, it makes sense to pose the optimization problem to be solved by the

86 Ch.5 Optimal Transport for Correctional Learning

teacher in terms of distribution functions, i.e., as an optimal transport problem

min
p

∥∥∥∥θ0 − J

(∫
y∈Y

dp(y, ·)
)∥∥∥∥2

(5.9a)

s.t.
∫

(y,ỹ)∈Y×Ỹ
c(y, ỹ)dp(y, ỹ) ≤ b

N
(5.9b)∫

ỹ∈Ỹ

∫
y∈A

dp(y, ỹ) = (p̂(y1, . . . , yN))(A), ∀A ∈ B. (5.9c)

Here, p ∈M+(Y × Ỹ) is a transportation map that represents the joint measure of
the original and modified samples, and p̂N the empirical distribution of the original
samples. It is important to note that this problem is generally infinite-dimensional
with linear constraints. However, the function J is not necessarily linear in general.
If J is Fréchet-differentiable, and we assume that the budget b is “small” (in the
sense that most of the original samples will not be modified), one can use the Taylor
approximation of the cost of the modified samples,

J

(∫
y∈Y

dp(y, ·)
)
≈ J(p̂) +

∫
y∈Y

∫
ỹ∈Ỹ

(∇J(p̂))(ỹ)dp(y, ỹ)

−
∫

y∈Y
(∇J(p̂))(y)dp̂(y),

(5.10)

We denote this Taylor approximation by JTA(O). Substitution into (5.9a) then
yields the objective

min
p
∥θ0 − JTA(O)∥2. (5.11)

Remark 5.1. Note how the constraints in (5.9) now consider the distribution of
the samples. This is in contrast to the original formulation in Section 2.5, where
each observation is considered individually.

5.3.2 Discretization of the Continuous Case
One of the most common approaches to solve the optimal transport problem in (5.9)
is to discretize it [82]. For simplicity, we will assume that the original samples are
independent and identically distributed, with distribution p0. We start by defining
a discretized sample space. Recall that our observation sequence is given by the
multiset1

O = {y1, . . . , yN}. (5.12)
We can let the set of unique values of O constitute our discretized sample space as

S =
⋃

o⊆O

o = {s1, . . . , sn} ⊆ O. (5.13)

1A sample may occur multiple times in the sequence.

5.3 Correctional Learning as an Optimal Transport Problem 87

For the continuous case, we note that with probability one,

S = O and n = card(S) = card(O) = N, (5.14)

since all the samples in O are distinct, with probability one. The elements in S will
be called states.

Remark 5.2. We note that there are other methods to determine the states. For
instance, they may be fixed to belong to some pre-determined set of values. However,
with regards to the nature of the framework of modifying an observed sequence, we
believe that the suggested approach is reasonable.

Furthermore, the teacher will be allowed to change the observations in O into
samples from the set

S̃ = {s̃1, . . . , s̃m}, (5.15)

which may or may not coincide with S. Note that card(S̃) = m.
We now continue by discretizing (5.9). We note that both the objective in

(5.10) as well as our constraints in (5.9) include our decision variable dp(y, ỹ) in the
integrals, which we cannot sample from. Thus, to approximate the integrals, we use
techniques from importance sampling [138]. We consider the proposal distribution

dµ(y, ỹ) = dq(y)dr(ỹ), (5.16)

where dq(y) and dr(ỹ) are probability measures defined on S and S̃, respectively.
Note that, for simplicity, µ has been chosen in terms of independent proposal dis-
tributions for y and ỹ. With this distribution, and restricting p to S×S̃, we rewrite
the estimator in (5.10) as

JTA(O) = J(p̂)

+
∫

y∈S

∫
ỹ∈S̃

(∇J(p̂))(ỹ) dp(y, ỹ)
dq(y)dr(ỹ)dq(y)dr(ỹ)

−
∫

y∈S
(∇J(p̂))(y)dp̂(y).

(5.17)

Using importance sampling, we can discretize the expression in (5.17) as

JTAD(O) = J(p̂)

+ 1
nm

n∑
i=1

m∑
j=1

∂J

∂pỹj

(p̂) dp(yi, ỹj)
dq(yi)dr(ỹj)

− 1
m

m∑
j=1

∂J

∂ỹj
(p̂),

(5.18)

88 Ch.5 Optimal Transport for Correctional Learning

where we use numerical differentiation to approximate the gradient∇J . To simplify
the notation, we define

α ∈ Rn×m : αij = dp(yi, ỹj)
dq(yi)dr(ỹj) (5.19)

to be our new decision variable. Our objective in (5.11) can then be written as

min
α
∥θ0 − JTAD(O)∥2. (5.20)

We discretize the budget constraint (5.9b) as

1
nm

n∑
i=1

m∑
j=1

c(yi, ỹj)αij ≤
b

N
. (5.21)

To discretize the constraint in (5.9c), we first utilize the same trick as before and
rewrite it as ∫

x∈S

dp(y, ỹ)
dq(y)dr(ỹ)dr(ỹ) = dp̂(y)

dq(y) . (5.22)

We discretize this as
1
m

m∑
j=1

dp(y, ỹj)
dq(yi)dr(ỹj) = dp̂(y)

dq(yi)
. (5.23)

Again, since we cannot sample from p(y, ỹ), we simply say that the above relation
must hold for all values of y, i.e.,

1
m

m∑
j=1

dp(yi, ỹj)
dq(yi)dr(ỹj)︸ ︷︷ ︸

αij

= dp̂(yi)
dq(yi)

, ∀i. (5.24)

All constraints are now written in terms of our new decision variables αij .

5.3.3 Importance Sampling: Different Approaches

Consider the case when S̃ = S, and dq = dr = p̂. This means that we we will work
directly with the observed samples, and the constraint in (5.24) then simplifies to

1
m

m∑
j=1

dp(yi, ỹj)
dq(yi)dr(ỹj) = dp̂

dq
(yi) = dp̂

dp̂
(yi) = 1, ∀i. (5.25)

We note that this case is very similar to a discrete setting in the sense that we are
limiting the teacher to change the observations into values that have already been
seen or encountered. This approach is similar to other resampling techniques and
can be viewed as a way of re-weighting the samples to change their importance for
the estimation.

5.4 Numerical results 89

We can also sample from dq and dr independently, with dq ̸= dr. Using this
approach, we can impose some prior knowledge on dr, either by defining it to be
the true distribution, or some distribution that will yield a more accurate estimate
of the parameter we are interested in. However, using this approach, we would not
be working directly with the empirical distribution, which means that we would
have to perform an interpolation step to figure out how to best change the actual
observations. We would also have to use a density estimation technique to enforce
the constraint in (5.9c).

5.3.4 Modifying the Sequence

Next we describe how the teacher modifies the sequence based on the α obtained
from solving (5.20) with respect to the constraints (5.21) and (5.24). Recall the
definition of α in (5.19), and that dp(y, ỹ) denotes the amount of probability mass
transferred from y to ỹ. Then, by applying Bayes’ theorem, we compute the Con-
ditional Probability Mass Function (cpmf) as

p(ỹ | y) = αp̂(ỹ), (5.26)

which will give us the probability of changing an observation y into ỹ.
The teacher’s intervention procedure is then as follows. For each sample in

yk ∈ O, the teacher modifies it according to the cpmf in (5.26). That is,

yk → ỹk, where ỹk ∼ p(ỹ | yk). (5.27)

To ensure that the intervention budget is not exceeded, the teacher generates Ms
new sequences. For each new generated sequence that satisfy the budget constraint
(i.e., for which the number of corrections is less than or equal to b), an updated
estimate is computed. Out of these estimates, the one yielding the lowest estimation
error is then chosen to be the optimal one. Should the teacher fail to find a sequence
that both improves the estimate and satisfies the budget constraint, it will keep the
original sequence.

Naturally, the teacher may follow different intervention policies. Alternative
approaches may include changing one sample at a time and then re-solve for a new
α following each update. This policy is similar to receding horizon control strategies
where we may interpret the budget to be the horizon [61].

Another possible strategy would be for the teacher to always make the change
with the highest probability. This would make for a greedy approach [139].

5.4 Numerical results

In this section, we evaluate our framework in three different settings; two theoretical
and one applied. For simplicity, we consider Y ∈ R and θ0 ∈ R in all settings. We
evaluate the performance in terms of the absolute error, i.e., e = |θ0 − θ̃|.

90 Ch.5 Optimal Transport for Correctional Learning

Figure 5.4.1: The absolute estimation error averaged over 100 Monte Carlo simula-
tions for increasing sample sizes and budgets. Note that b = 0 corresponds to the
case with no teacher intervention.

5.4.1 Variance Estimation of a Gaussian Distribution
In the first experiment, we use the framework to estimate the variance of a Gaussian
distribution. We consider the observations to be sampled from the distribution
N (0, 1), so θ0 = σ2 = 1.

We perform the estimation on three sample sizes, N = {10, 20, 50}, subject to
four different intervention budgets, b = {0, 1, 5, 10}. In this example, we use a uni-
form transportation cost, i.e., c(y, ỹ) = 11T − I. This means that all changes made
are equally expensive. For each sample size and budget, we perform the experiment
100 times and compute the average absolute error. For all configurations, we use
Ms = 1000. The results are shown in Figure 5.4.1. As expected, the plot shows a
decrease in the estimation error as the sample size increase. It also shows that the
error is further decreased as the budget increases.

5.4.2 Scale Estimation of a Weibull Distribution
Next we apply the framework to estimate the scale parameter of a Weibull distri-
bution. The probability density function is given by

f(x) =


ϵ

λ

(x

λ

)ϵ−1
e−(x−λ)ϵ

, x ≥ 0

0, x < 0,
(5.28)

where ϵ > 0 is called the shape parameter, and λ > 0 the scale parameter. In
this example, we will consider the estimation of λ of a Weibull distribution with
θ0 = λ0 = 2 and ϵ = 8.

5.4 Numerical results 91

Figure 5.4.2: The absolute estimation error averaged over 100 Monte Carlo simula-
tions for increasing sample sizes and budgets. Note that b = 0 corresponds to the
case with no teacher intervention.

There are different approaches available for estimating λ, see e.g. [140]. In this
experiment, we use the Bayesian two-stage approach derived in [141]. We use the
proportional cost

c(y, ỹ) = 10× ⌈|ỹ − y|⌉, (5.29)

where ⌈·⌉ denotes the ceiling function. As in the previous example, we run the
estimation process on the sample sizes N = {10, 20, 50} and for the intervention
budgets b = {0, 1, 5, 10}. We use Ms = 2000 for all configurations. The averaged
estimation errors are shown in Figure 5.4.2. The results are similar to what we ob-
served in the previous experiment, with an improved estimation error for increasing
sample sizes and budgets.

5.4.3 Reward Estimation in Inverse Reinforcement Learning

As a final example, we apply our framework to update a robot’s reward function
in an inverse reinforcement learning setting. Recent work on learning from human
interaction shows how physical corrections made by a human (e.g. in the form of
applied torque) can improve a robot’s learning process [142]. Inspired by their
problem setup, we apply our framework in a similar setting.

Consider a robot arm being tasked with moving a coffee cup from one side
of a table to the other. To learn the task, the robot gets to observe a set of
N trajectories, {ξ1, . . . , ξN}, demonstrated by a human. Figure 5.4.3 illustrates
some examples of trajectories demonstrated on a robotic arm with seven degrees
of freedom implemented in PyBullet. Each trajectory is associated with a total

92 Ch.5 Optimal Transport for Correctional Learning

feature count for each feature i ∈ [1, nf]

Φi(ξ) =
∑
x∈ξ

ϕi(x), (5.30)

where ϕi(x) is the local feature value in a point x along the trajectory ξ. A high
feature value corresponds to a good position in space. The features represent dif-
ferent subgoals in performing the task, such as “stay nearby the top of the table”
and “avoid the laptop”. Based on these features, the robot learns a reward function

R = ΘT Φ = θ1Φ1 + . . . θnΦn, (5.31)

where the weights Θ represent the importance of each feature to the human.
Assume now that the robot has learned a reward function based on the following

observations collected over N = 5 trajectories with nf = 3 features
Φ1 = {Φ1(ξk)}5

k=1 = {100, 75, 50, 20, 5}
Φ2 = {Φ2(ξk)}5

k=1 = {90, 200, 10, 2, 30}
Φ3 = {Φ3(ξk)}5

k=1 = {50, 20, 3, 5, 10}
. (5.32)

An expert may then apply our framework to improve the robot’s learned θi’s,
by modifying the sets Φi in (5.32) into Φ̃i. As estimator, we consider a slightly
modified version of the weight update in [142]:

θ̃i = θ̂i + β

∑
Φ∈Φ

Φ−
∑
Φ̃∈Φ̃

Φ̃

 , (5.33)

where β < 0 is a step/scaling parameter. Here, we consider β = −0.001. Note
how the feature weights are updated based on the direction of change of the feature
values between the original and the modified trajectories. If the altered corrections
pass further away from, say, the laptop, the θi corresponding to the distance-to-
laptop feature will increase.

For this experiment we used c(y, ỹ) = 11T − I, b = 1, and Ms = 1000. The
corrected feature values together with their corresponding updated weight estimate
are shown in Table 5.4.1. For reference, we also we also present the true weights
and the initial estimates in the same table. The results show that the updated
estimates are closer to the true values, compared to the initial estimates.

5.5 Chapter Summary

In this chapter, we presented a generalized formulation of the batch correctional
learning framework using optimal transport. We demonstrated that by expressing
the correctional learning problem as an optimization program in terms of distribu-
tion functions, we obtain a more general and flexible framework better suited for

5.5 Chapter Summary 93

Figure 5.4.3: Here, the robot observes three trajectories with different feature val-
ues. The expert may alter some of them to the one that is closer to its preferences.
For example, if the robot should avoid the laptop, the expert may change the blue
trajectory into the red one, to reflect this.

Table 5.4.1: The corrected feature values and their corresponding estimates. The
corrected values are underlined.

True weight Old estimate New estimate Corrected feature values
θ1 = 0.1 θ̂1 = 0.5 θ̃1 = 0.05 Φ̃1 = {100, 75, 50, 20, 50}
θ2 = 1 θ̂2 = 0.5 θ̃2 = 1.1 Φ̃2 = {30, 200, 10, 2, 30}
θ3 = 0.8 θ̂3 = 0.5 θ̃3 = 0.8 Φ̃3 = {20, 20, 3, 5, 10}

estimation of more complex characteristics. We successfully applied the framework
on three estimation processes; for the variance estimation of a Gaussian, the scale
estimation of a Weibull, and, finally, in an inverse reinforcement setting where we
improved a robot’s reward function.

Chapter 6

Conclusions and Future Work

This thesis focused on learning-based approaches for different components of the
control loop, ranging from neural network-based model predictive control, to co-
operative learning for system identification. Augmenting more traditional methods
with machine learning tools is pivotal for the further development of fast, efficient
and robust control strategies. We conclude this thesis by highlighting our main
contributions to this domain and discuss interesting future research directions for
its continued exciting evolution.

In Chapter 3, we presented a framework for offline training and evaluation of a
neural network for implementing MPC using gradient data. Our primary focus was
on investigating the possibility of replacing online MPC optimization solvers with
pre-trained neural networks, as such a transition holds the promise of achieving
highly efficient and robust real-time implementations.

The main idea is to approximate the MPC mapping from state to control input
with a constrained ReLU-based neural network equipped with a convex optimiza-
tion projection layer to ensure recursive feasibility and asymptotic stability of the
resulting trajectories. The main novel aspect lies in incorporating the gradient of
the MPC control law with respect to the state input during training of the neural
networks.

We used MPT3 [68] and PyTorch [104] to implement the framework. We also
used MPT3 to generate training data and to evaluate the resulting controller. A
critical element revolves around the generation of training samples, which is related
to input design in system identification, see e.g. [143]. This is particularly challeng-
ing when dealing with large state spaces. Here we proposed to use a HAR sampler
for data generation. We evaluated the resulting controllers based on generated
trajectories and normalized cost-functions. The numerical experiments showed the
trade-off between the amount of training data and the approximation qualities of
the resulting controller.

This framework serves as a first step towards controller identification of MPC
using ReLU-networks trained on gradient data. It should be noted that our ap-

95

96 Ch.6 Conclusions and Future Work

proach does not assume any model information beyond the state, control signal
and gradient during training. Our framework is therefore not restricted to con-
sider only eMPC or time-invariant MPC problems. Looking ahead, including more
model-specific data in the form of model parameters and their respective gradients,
or complete control trajectories, in the training data could possibly enhance the
framework’s effectiveness. However, this would increase the complexity and the
need for even more structured training data generation. In addition, extending and
evaluating the framework on more advanced MPC problems, including non-linear
MPC, presents an interesting direction for future research. The numerical examples
provided in this chapter establish a proof of concept; depending on the nature and
complexity of the MPC problem, additional challenges will need to be addressed in
the future. We believe that this gives a consistent way of approaching the training
aspect. Other interesting future directions include adjusting the loss function to
account also the the control cost, and not just the NMSE, and exploring whether
would it be more meaningful to incorporate the temporal aspect actively into the
training process. That is, rather than randomly sampling isolated training data-
points {x, u} from the state space, we would consider sampling datapoints from full
trajectories.

Chapter 4 introduces an online formulation of the batch correctional learning
framework, intially presented in Section 2.5. Inspired by cooperative (learning)
problems, correctional learning was developed to tackle challenges associated with
unrepresentative data in system identification problems. It offers an alternative
strategy for incorporating external or prior knowledge into the estimation process,
especially in cases where direct knowledge transmission between agents might be
undesirable or even impossible.

The core of the correctional learning framework centers around a teacher-student
model. In this setup, an expert (teacher) agent seeks to assist a learner (student)
agent in its estimation process by transferring its knowledge in the space of induced
probability distributions. In the original offline setting, the teacher analyses and
modifies entire batches of sampled data before passing them on to the student. In
this process, the teacher is constrained to a fixed intervention budget, reflecting the
limited communication between the two agents. However, many real-life processes
often demand immediate action as data arrives sequentially. Thus, we identified
a need for an online counterpart of the framework, where the teacher evaluates
(and modifies) each incoming sample immediately and individually, while operating
under the same budget constraint.

The main result of this chapter is the formulation of the online correctional
learning problem as an MDP. This formulation can readily be adapted to solve many
different tasks, simply by adjusting the reward function of the MDP to align with
specific task objectives. We employ dynamic programming techniques to determine
the opimtal correctional learning policy for the teacher.

As part of our work, we established a theoretical upper bound on the reduction
in variance of the student’s estimation error in the case of multinomial data, with
teacher assistance. Furthermore, we demonstrated the effectiveness of our approach

97

through three examples. We showcased improved estimation performance when
employing binomial and multinomial data. Addtionally, we applied the framework
to a biological parameter estimation scenario, demonstrating its success in more
complex settings.

This work opens the door to extending our method to various interesting appli-
cations, such as correctional reinforcement learning, where the teacher assists the
student agent in learning optimal policies. Furthermore, a comparative analysis
against related approaches will provide valuable insights. Overcoming the dimen-
sionality problems posed by MDPs will be an important step along the way towards
broader applicability and scalability of our proposed framework.

In Chapter 5, we presented a generalized formulation of the batch correctional
learning framework using optimal transport. Our novel approach offers significant
advancements compared to the existing correctional learning formulations, which
exhibit limitations in estimating intricate characteristics and considering alternative
intervention strategies.

Our main contribution in this chapter lies in leveraging tools from optimal trans-
port – a mathematical framework for finding the most efficient way to transport
mass, according to some cost function. By viewing the teacher’s optimal corrections
as a form of probability mass transportation, we framed the correctional problem
as an optimization program in terms of distribution functions – i.e., as an optimal
transport problem. In contrast to previous formulations, this approach considers
the samples implicitly through their distribution, thereby enabling the estimation
of more complex parameters and the exploration of different teacher policies.

We demonstrated the effectiveness of this formulation through three estimation
scenarios: variance estimation of a Gaussian, scale estimation of a Weibull, and
in an inverse reinforcement learning setting where we improved a robot’s reward
function. This novel optimal-transport formulation opens up for several interesting
extensions, such as employing correctional learning for differential privacy, handling
time-series data, and for balancing biased or skewed learning datasets. Addressing
the curse of dimensionality of the discretized problem will be an important step
along the way.

References

[1] R. Gross, Psychology: The Science of Mind and Behaviour. London, England:
Hodder Education, 6 ed., Apr. 2010.

[2] “learn, v.,” in OED Online, Oxford University Press, Oct. 2021.

[3] A. M. Ozbayoglu, M. U. Gudelek, and O. B. Sezer, “Deep learning for financial
applications : A survey,” Applied Soft Computing, vol. 93, p. 106384, 2020.

[4] R. C. Cavalcante, R. C. Brasileiro, V. L. Souza, J. P. Nobrega, and A. L.
Oliveira, “Computational Intelligence and Financial Markets: A Survey and
Future Directions,” Expert Systems with Applications, vol. 55, pp. 194–211,
2016.

[5] A. Sujith, G. S. Sajja, V. Mahalakshmi, S. Nuhmani, and B. Prasanalakshmi,
“Systematic review of smart health monitoring using deep learning and arti-
ficial intelligence,” Neuroscience Informatics, vol. 2, no. 3, p. 100028, 2022.

[6] “Meet Flo – The First Period & Ovulation Tracker that Uses Neural
Networks,” insideBIGDATA. https://insidebigdata.com/2017/05/21/
meet-flo-first-period-ovulation-tracker-uses-neural-networks/.
Last accessed on 2023-05-31.

[7] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-making
for autonomous vehicles,” Annual Review of Control, Robotics, and Au-
tonomous Systems, vol. 1, no. 1, pp. 187–210, 2018.

[8] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura, “Navigat-
ing occluded intersections with autonomous vehicles using deep reinforcement
learning,” in 2018 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 2034–2039, 2018.

[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

99

https://insidebigdata.com/2017/05/21/meet-flo-first-period-ovulation-tracker-uses-neural-networks/
https://insidebigdata.com/2017/05/21/meet-flo-first-period-ovulation-tracker-uses-neural-networks/
http://www.deeplearningbook.org

[10] H. S. Kang, J. Y. Lee, S. Choi, H. Kim, J. H. Park, J. Y. Son, B. H.
Kim, and S. D. Noh, “Smart manufacturing: Past research, present find-
ings, and future directions,” International Journal of Precision Engineering
and Manufacturing-Green Technology, vol. 3, pp. 111–128, Jan. 2016.

[11] M. Bertolini, D. Mezzogori, M. Neroni, and F. Zammori, “Machine learn-
ing for industrial applications: A comprehensive literature review,” Expert
Systems with Applications, vol. 175, p. 114820, 2021.

[12] P. K. R. Maddikunta, Q.-V. Pham, P. B, N. Deepa, K. Dev, T. R. Gadekallu,
R. Ruby, and M. Liyanage, “Industry 5.0: A survey on enabling technologies
and potential applications,” Journal of Industrial Information Integration,
vol. 26, p. 100257, 2022.

[13] K. Hunt, D. Sbarbaro, R. Żbikowski, and P. Gawthrop, “Neural Networks
for Control Systems—A Survey,” Automatica, vol. 28, no. 6, pp. 1083–1112,
1992.

[14] B. Recht, “A Tour of Reinforcement Learning: The View from Continuous
Control,” Annual Review of Control, Robotics, and Autonomous Systems,
vol. 2, pp. 253–279, May 2019.

[15] T. Duriez, S. L. Brunton, and B. R. Noack, Machine Learning Control – Tam-
ing Nonlinear Dynamics and Turbulence. Springer International Publishing,
2017.

[16] Z.-P. Jiang, T. Bian, and W. Gao, Learning-Based Control: A Tutorial and
Some Recent Results. Now Foundations and Trends, 2020.

[17] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger, “Learning-
Based Model Predictive Control: Toward Safe Learning in Control,” Annual
Review of Control, Robotics, and Autonomous Systems, vol. 3, no. 1, pp. 269–
296, 2020.

[18] S. Moe, A. M. Rustad, and K. G. Hanssen, “Machine Learning in Control
Systems: An Overview of the State of the Art,” in Artificial Intelligence
XXXV (M. Bramer and M. Petridis, eds.), (Cham), pp. 250–265, Springer
International Publishing, 2018.

[19] W. E, “A Proposal on Machine Learning via Dynamical Systems,” Commu-
nications in Mathematics and Statistics, vol. 5, pp. 1–11, Mar. 2017.

[20] Q. Li and S. Hao, “An optimal control approach to deep learning and applica-
tions to discrete-weight neural networks,” in Proceedings of the 35th Interna-
tional Conference on Machine Learning (J. Dy and A. Krause, eds.), vol. 80
of Proceedings of Machine Learning Research, pp. 2985–2994, PMLR, 10–15
Jul 2018.

[21] B. Chang, L. Meng, E. Haber, F. Tung, and D. Begert, “Multi-level resid-
ual networks from dynamical systems view,” in International Conference on
Learning Representations, 2018.

[22] E. Haber and L. Ruthotto, “Stable architectures for deep neural networks,”
Inverse Problems, vol. 34, p. 014004, dec 2017.

[23] K. J. Åstrom and R. M. Murray, Feedback Systems: An Introduction for
Scientists and Engineers. USA: Princeton University Press, 2008.

[24] N. S. Nise, Control Systems Engineering. Nashville, TN: John Wiley & Sons,
7 ed., Sept. 2013.

[25] L. Ljung, System Identification: Theory for the User. Prentice Hall informa-
tion and system sciences series, Prentice Hall PTR, 1999.

[26] D. Gedon, N. Wahlström, T. B. Schön, and L. Ljung, “Deep state space mod-
els for nonlinear system identification∗∗this research was partially supported
by the wallenberg ai, autonomous systems and software program (wasp)
funded by knut and alice wallenberg foundation and the swedish research
council, contracts 2016-06079 and 2019-04956.,” IFAC-PapersOnLine, vol. 54,
no. 7, pp. 481–486, 2021. 19th IFAC Symposium on System Identification
SYSID 2021.

[27] A. Chiuso and G. Pillonetto, “System identification: A machine learning
perspective,” Annual Review of Control, Robotics, and Autonomous Systems,
vol. 2, no. 1, pp. 281–304, 2019.

[28] W. Liu, J. C. Principe, and S. S. Haykin, Kernel adaptive filtering. Adaptive
and Cognitive Dynamic Systems: Signal Processing, Learning, Communica-
tions and Control, Hoboken, NJ: Wiley-Blackwell, Feb. 2010.

[29] D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative learning
control,” IEEE Control Systems Magazine, vol. 26, no. 3, pp. 96–114, 2006.

[30] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement learning and
feedback control: Using natural decision methods to design optimal adaptive
controllers,” IEEE Control Systems Magazine, vol. 32, no. 6, pp. 76–105,
2012.

[31] P. Antsaklis, “Neural networks for control systems,” IEEE Transactions on
Neural Networks, vol. 1, no. 2, pp. 242–244, 1990.

[32] W. T. Miller, R. S. Sutton, and P. J. Werbos, eds., Neural Networks for
Control. Neural Network Modeling and Connectionism, London, England:
MIT Press, Mar. 1995.

[33] M. Hagan and H. Demuth, “Neural networks for control,” in Proceedings of the
1999 American Control Conference (Cat. No. 99CH36251), vol. 3, pp. 1642–
1656 vol.3, 1999.

[34] R. Sutton, A. Barto, and R. Williams, “Reinforcement learning is direct adap-
tive optimal control,” IEEE Control Systems Magazine, vol. 12, no. 2, pp. 19–
22, 1992.

[35] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor with
reinforcement learning,” IEEE Robotics and Automation Letters, vol. 2, no. 4,
pp. 2096–2103, 2017.

[36] Z. Zhang, D. Zhang, and R. C. Qiu, “Deep reinforcement learning for power
system applications: An overview,” CSEE Journal of Power and Energy Sys-
tems, vol. 6, no. 1, pp. 213–225, 2020.

[37] W. Xia, H. Li, and B. Li, “A control strategy of autonomous vehicles based
on deep reinforcement learning,” in 2016 9th International Symposium on
Computational Intelligence and Design (ISCID), vol. 2, pp. 198–201, 2016.

[38] C. Molnar, Interpretable Machine Learning. Lulu.com, 2 ed., 2022.

[39] C. Dwork and A. Roth, The Algorithmic Foundations of Differential Privacy.
Now Foundations and Trends, 2014.

[40] S. Qin and T. A. Badgwell, “A survey of industrial model predictive control
technology,” Control Engineering Practice, vol. 11, no. 7, pp. 733–764, 2003.

[41] S. Chen, K. Saulnier, N. Atanasov, D. D. Lee, V. Kumar, G. J. Pappas,
and M. Morari, “Approximating Explicit Model Predictive Control Using
Constrained Neural Networks,” in 2018 Annual American Control Conference
(ACC), pp. 1520–1527, 2018.

[42] S. W. Chen, T. Wang, N. Atanasov, V. Kumar, and M. Morari, “Large Scale
Model Predictive Control with Neural Networks and Primal Active Sets,”
arXiv preprint arXiv:1910.10835, 2019.

[43] E. Maddalena, C. da S. Moraes, G. Waltrich, and C. Jones, “A Neural Net-
work Architecture to Learn Explicit MPC Controllers from Data,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 11362–11367, 2020. 21st IFAC World
Congress.

[44] B. Amos and J. Z. Kolter, “OptNet: Differentiable optimization as a layer in
neural networks,” in Proceedings of the 34th International Conference on Ma-
chine Learning, vol. 70 of Proceedings of Machine Learning Research, pp. 136–
145, PMLR, 2017.

[45] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter, “Dif-
ferentiable convex optimization layers,” in Advances in Neural Information
Processing Systems, 2019.

[46] Y. Chen and J. Karlsson, “State tracking of linear ensembles via optimal mass
transport,” IEEE Control Systems Letters, vol. 2, no. 2, pp. 260–265, 2018.

[47] K. Åström and P. Eykhoff, “System identification—a survey,” Automatica,
vol. 7, pp. 123–162, 3 1971.

[48] L. Ljung, C. Andersson, K. Tiels, and T. B. Schön, “Deep learning and system
identification,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 1175–1181, 2020. 21st
IFAC World Congress.

[49] L. Ljung, “Perspectives on system identification,” Annual Reviews in Control,
vol. 34, no. 1, pp. 1–12, 2010.

[50] F. Liu and P. Demosthenes, “Real-world data: A brief review of the methods,
applications, challenges and opportunities,” BMC Medical Research Method-
ology, vol. 22, p. 287, 11 2022.

[51] J. Buolamwini and T. Gebru, “Gender shades: Intersectional accuracy dispar-
ities in commercial gender classification,” in Proceedings of the 1st Conference
on Fairness, Accountability and Transparency (S. A. Friedler and C. Wilson,
eds.), vol. 81 of Proceedings of Machine Learning Research, pp. 77–91, PMLR,
23–24 Feb 2018.

[52] I. Lourenço, R. Mattila, C. R. Rojas, and B. Wahlberg, “Cooperative system
identification via correctional learning,” 19th IFAC Symposium on System
Identification, vol. 54, no. 7, pp. 19–24, 2021.

[53] G. Goodwin, J. Doná, and M. Seron, Constrained Control and Estimation: An
Optimisation Approach. Communications and Control Engineering, Springer,
2005.

[54] J. B. Rawlings, D. Q. Mayne, and M. M. Diehl, Model Predictive Control:
Theory, Computation, and Design. Nob Hill Publishing, 2017.

[55] E. Kerrigan, Robust Constraint Satisfaction: Invariant Sets and Predictive
Control. PhD thesis, Department of Engineering, University of Cambridge,
Cambridge, 2000.

[56] T. Glad and L. Ljung, Control Theory: Multivariable and Nonlinear Methods.
11 New Fetter Lane, London EC4P 4EE: Taylor & Francis, 1st ed., 2000.

[57] W. Kwon and S. Han, Receding Horizon Control: Model Predictive Control
for State Models. Advanced Textbooks in Control and Signal Processing,
Springer London, 1 ed., 2006.

[58] J. Zabczyk, Mathematical Control Theory: An Introduction. Systems & Con-
trol: Foundations & Applications, Cham: Springer Nature, 2 ed., 2020.

[59] E. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional
Systems. Texts in Applied Mathematics, Springer New York, NY, 2 ed., 2013.

[60] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11,
pp. 1747–1767, 1999.

[61] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear and
Hybrid Systems. USA: Cambridge University Press, 1st ed., 2017.

[62] P. Scokaert and J. Rawlings, “Constrained linear quadratic regulation,” IEEE
Transactions on Automatic Control, vol. 43, no. 8, pp. 1163–1169, 1998.

[63] P. Grieder, F. Borrelli, F. Torrisi, and M. Morari, “Computation of the con-
strained infinite time linear quadratic regulator,” in Proceedings of the 2003
American Control Conference, 2003., vol. 6, pp. 4711–4716 vol.6, 2003.

[64] G. Stathopoulos, M. Korda, and C. N. Jones, “Solving the Infinite-Horizon
Constrained LQR Problem Using Accelerated Dual Proximal Methods,”
IEEE Transactions on Automatic Control, vol. 62, no. 4, pp. 1752–1767, 2017.

[65] P. Bemporad, Explicit Model Predictive Control, pp. 1–9. London: Springer
London, 2013.

[66] A. Alessio and A. Bemporad, A Survey on Explicit Model Predictive Control,
pp. 345–369. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

[67] M. Kvasnica, J. Holaza, B. Takács, and D. Ingole, “Design and Verification
of Low-Complexity Explicit MPC Controllers in MPT3 (Extended version),”
in 2015 European Control Conference (ECC), 2015.

[68] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari, “Multi-Parametric
Toolbox 3.0,” in 2013 European Control Conference (ECC), pp. 502–510,
2013.

[69] L. Ljung, Modeling and identification of dynamic systems. Lund: Studentlit-
teratur, second edition ed., 2021.

[70] S. Haykin, Neural Networks: A Comprehensive Foundation. USA: Prentice
Hall PTR, 1st ed., 1994.

[71] R. Rojas, Neural Networks: A Systematic Introduction. Berlin, Heidelberg:
Springer-Verlag, 1996.

[72] C. M. Bishop, Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2006.

[73] A. Graves, Supervised Sequence Labelling with Recurrent Neural Networks.
Studies in Computational Intelligence, Berlin: Springer, 2012.

[74] M. Nielsen, Neural Networks and Deep Learning. Determination Press, 2015.

[75] G. Zaccone and M. R. Karim, Deep Learning with TensorFlow - Second Edi-
tion: Explore Neural Networks and Build Intelligent Systems with Python.
Packt Publishing, 2nd ed., 2018.

[76] P. Dangeti, Statistics for Machine Learning: Techniques for Exploring Super-
vised, Unsupervised, and Reinforcement Learning Models with Python and R.
Packt Publishing, 2017.

[77] W. Di, A. Bhardwaj, and J. Wei, Deep Learning Essentials: Your Hands-on
Guide to the Fundamentals of Deep Learning and Neural Network Modeling.
Packt Publishing, 2018.

[78] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language
for convex optimization,” Journal of Machine Learning Research, vol. 17,
no. 83, pp. 1–5, 2016.

[79] M. Grant, S. Boyd, and Y. Ye, Disciplined Convex Programming, pp. 155–210.
Boston, MA: Springer US, 2006.

[80] C. Villani, Topics in Optimal Transport. American Mathematical Society,
2003.

[81] G. Peyré and M. Cuturi, “Computational optimal transport,” Foundations
and Trends in Machine Learning, vol. 11, pp. 355–607, 2019.

[82] Y. Chen, J. Karlsson, and A. Ringh, “Optimal transport for applications in
control and estimation,” IEEE Control Systems Magazine, vol. 41, pp. 28–33,
8 2021.

[83] G. Cimini, D. Bernardini, S. Levijoki, and A. Bemporad, “Embedded model
predictive control with certified real-time optimization for synchronous mo-
tors,” IEEE Transactions on Control Systems Technology, vol. 29, no. 2,
pp. 893–900, 2021.

[84] B. Karg and S. Lucia, “Efficient representation and approximation of model
predictive control laws via deep learning,” IEEE Transactions on Cybernetics,
vol. 50, no. 9, pp. 3866–3878, 2020.

[85] S. Fahandezh-Saadi and M. Tomizuka, “In proximity of relu dnn, pwa func-
tion, and explicit mpc,” arXiv preprint arXiv:2006.05001, 2020.

[86] S. East, M. Gallieri, J. Masci, J. Koutnik, and M. Cannon, “Infinite-horizon
differentiable model predictive control,” arXiv preprint arXiv:2001.02244,
2020.

[87] T. Parisini and R. Zoppoli, “A receding-horizon regulator for nonlinear sys-
tems and a neural approximation,” Autom., vol. 31, pp. 1443–1451, 1995.

[88] B. Åkesson and H. Toivonen, “A neural network model predictive controller,”
Journal of Process Control, vol. 16, pp. 937–946, 10 2006.

[89] Y. Wang and S. Boyd, “Fast model predictive control using online optimiza-
tion,” IEEE Transactions on Control Systems Technology, vol. 18, no. 2,
pp. 267–278, 2010.

[90] G. C. Goodwin, J. A. D. Doná, and M. M. Seron, Constrained Control and
Estimation. Springer London, 2005.

[91] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number of
linear regions of deep neural networks,” in Advances in Neural Information
Processing Systems (Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
and K. Weinberger, eds.), vol. 27, Curran Associates, Inc., 2014.

[92] J. P. Boyle and R. L. Dykstra, “A method for finding projections onto the
intersection of convex sets in hilbert spaces,” in Advances in Order Restricted
Statistical Inference (R. Dykstra, T. Robertson, and F. T. Wright, eds.), (New
York, NY), pp. 28–47, Springer New York, 1986.

[93] S. S. Pon Kumar, A. Tulsyan, B. Gopaluni, and P. Loewen, “A deep learn-
ing architecture for predictive control,” IFAC-PapersOnLine, vol. 51, no. 18,
pp. 512–517, 2018. 10th IFAC Symposium on Advanced Control of Chemical
Processes ADCHEM 2018.

[94] N. Lanzetti, Y. Z. Lian, A. Cortinovis, L. Dominguez, M. Mercangöz, and
C. Jones, “Recurrent neural network based mpc for process industries,” in
2019 18th European Control Conference (ECC), pp. 1005–1010, 2019.

[95] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015.

[96] R. Winqvist, A. Venkitaraman, and B. Wahlberg, “On Training and Eval-
uation of Neural Network Approaches for Model Predictive Control,” arXiv
prepreint arXiv:2005:04112, 2020.

[97] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: an
operator splitting solver for quadratic programs,” Mathematical Programming
Computation, vol. 12, no. 4, pp. 637–672, 2020.

[98] G. E. P. Box and K. B. Wilson, “On the experimental attainment of optimum
conditions,” Journal of the Royal Statistical Society. Series B (Methodologi-
cal), vol. 13, no. 1, pp. 1–45, 1951.

[99] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, “Taking
the human out of the loop: A review of bayesian optimization,” Proceedings
of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[100] H. O. Mete and Z. B. Zabinsky, “Pattern hit-and-run for sampling efficiently
on polytopes,” Operations Research Letters, vol. 40, no. 1, pp. 6–11, 2012.

[101] Z. B. Zabinsky and R. L. Smith, Hit-and-Run Methods, pp. 721–729. Boston,
MA: Springer US, 2013.

[102] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (Y. Bengio
and Y. LeCun, eds.), 2015.

[103] G. C. Pereira, P. F. Lima, B. Wahlberg, H. Pettersson, and J. Mårtensson,
“Linear time-varying robust model predictive control for discrete-time non-
linear systems,” in 2018 IEEE Conference on Decision and Control (CDC),
pp. 2659–2666, 2018.

[104] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems (H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.),
vol. 32, Curran Associates, Inc., 2019.

[105] D. Tabas and B. Zhang, “Safe and efficient model predictive control using
neural networks: An interior point approach,” in 2022 IEEE 61st Conference
on Decision and Control (CDC), pp. 1142–1147, 2022.

[106] C. Dawson, Z. Qin, S. Gao, and C. Fan, “Safe nonlinear control using robust
neural lyapunov-barrier functions,” in Proceedings of the 5th Conference on
Robot Learning (A. Faust, D. Hsu, and G. Neumann, eds.), vol. 164 of Pro-
ceedings of Machine Learning Research, pp. 1724–1735, PMLR, 08–11 Nov
2022.

[107] S. Mukherjee, J. Drgoňa, A. Tuor, M. Halappanavar, and D. Vrabie, “Neural
lyapunov differentiable predictive control,” in 2022 IEEE 61st Conference on
Decision and Control (CDC), pp. 2097–2104, 2022.

[108] S. Yang, S. Chen, V. M. Preciado, and R. Mangharam, “Differentiable safe
controller design through control barrier functions,” IEEE Control Systems
Letters, vol. 7, pp. 1207–1212, 2023.

[109] A. Didier, R. C. Jacobs, J. Sieber, K. P. Wabersich, and M. N. Zeilinger,
“Approximate predictive control barrier functions using neural networks:
A computationally cheap and permissive safety filter,” arXiv preprint
arXiv:2211.15104, 2022.

[110] C. Dawson, S. Gao, and C. Fan, “Safe Control With Learned Certificates: A
Survey of Neural Lyapunov, Barrier, and Contraction Methods for Robotics
and Control,” IEEE Transactions on Robotics, 2023.

[111] T. X. Ngheim, J. Drgona, C. Jones, Z. Nagy, R. Schwan, B. Dey,
A. Chakrabarty, S. Di Cairano, J. A. Paulson, A. Carron, M. Zeilinger, W. S.
Cortez, and D. L. Vrabie, “Physics-informed machine learning for modeling
and control of dynamical systems,” in American Control Conference (ACC),
May 2023.

[112] H. Hose, J. Köhler, M. N. Zeilinger, and S. Trimpe, “Approximate non-linear
model predictive control with safety-augmented neural networks,” arXiv
preprint arXiv:2304.09575, 2023.

[113] Y. Zhu, “System identification for process control: Recent experience and
outlook,” IFAC Proceedings Volumes, vol. 39, no. 1, pp. 20–32, 2006. 14th
IFAC Symposium on Identification and System Parameter Estimation.

[114] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot
learning from demonstration,” Robotics and Autonomous Systems, vol. 57,
no. 5, pp. 469–483, 2009.

[115] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning,” ACM
Computing Surveys, vol. 50, pp. 1–35, Apr. 2017.

[116] K. Kira and L. A. Rendell, “A practical approach to feature selection,” in Pro-
ceedings of the Ninth International Workshop on Machine Learning, ML92,
(San Francisco, CA, USA), p. 249–256, Morgan Kaufmann Publishers Inc.,
1992.

[117] J. Wang, P. Zhao, S. C. Hoi, and R. Jin, “Online feature selection and its ap-
plications,” IEEE Transactions on Knowledge and Data Engineering, vol. 26,
no. 3, pp. 698–710, 2014.

[118] L. Pronzato, “Optimal experimental design and some related control prob-
lems,” Automatica, vol. 44, no. 2, pp. 303–325, 2008.

[119] H. Hjalmarsson, “System identification of complex and structured systems,”
European Journal of Control, vol. 15, no. 3, pp. 275–310, 2009.

[120] C. Aggarwal, X. Kong, Q. Gu, J. Han, and P. Yu, Active Learning: A Survey,
pp. 571–605. CRC Press, Jan. 2014. Publisher Copyright: © 2015 by Taylor
& Francis Group, LLC.

[121] S. Verma, J. Dickerson, and K. Hines, “Counterfactual explanations for ma-
chine learning: A review,” arXiv preprint arXiv:2010.10596, 2020.

[122] P. Kuusela and D. Ocone, “Learning with side information: Pac learning
bounds,” Journal of Computer and System Sciences, vol. 68, no. 3, pp. 521–
545, 2004.

[123] T. Cover and J. Thomas, Elements of Information Theory. Wiley, 2 ed., 2006.

[124] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley, 4 1994.

[125] Q. Welniarz, Y. Worbe, and C. Gallea, “The forward model: A unifying
theory for the role of the cerebellum in motor control and sense of agency,”
Frontiers in Systems Neuroscience, vol. 15, 2021.

[126] P. Lanillos, D. Oliva, A. Philippsen, Y. Yamashita, Y. Nagai, and G. Cheng,
“A review on neural network models of schizophrenia and autism spectrum
disorder,” Neural Networks, vol. 122, pp. 338–363, 2020.

[127] I. Lourenço, R. Winqvist, C. R. Rojas, and B. Wahlberg, “A teacher-student
markov decision process-based framework for online correctional learning,” in
2022 IEEE 61st Conference on Decision and Control (CDC), pp. 3456–3461,
2022.

[128] A. Galichon, Optimal Transport Methods in Economics. Princeton University
Press, 2016.

[129] I. Haasler, J. Karlsson, and A. Ringh, “Control and estimation of ensembles
via structured optimal transport,” IEEE Control Systems Magazine, vol. 41,
pp. 50–69, 8 2021.

[130] J. Digne, D. Cohen-Steiner, P. Alliez, F. de Goes, and M. Desbrun, “Feature-
preserving surface reconstruction and simplification from defect-laden point
sets,” Journal of Mathematical Imaging and Vision, vol. 48, pp. 369–382, 2
2014.

[131] C. Frogner, C. Zhang, H. Mobahi, M. Araya, and T. A. Poggio, “Learning with
a Wasserstein Loss,” in Advances in Neural Information Processing Systems
(C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, eds.), vol. 28,
Curran Associates, Inc., 2015.

[132] A. Gramfort, G. Peyré, and M. Cuturi, “Fast optimal transport averag-
ing of neuroimaging data,” in Information Processing in Medical Imaging
(S. Ourselin, D. C. Alexander, C.-F. Westin, and M. J. Cardoso, eds.),
(Cham), pp. 261–272, Springer International Publishing, 2015.

[133] A. Tompkins, R. Senanayake, and F. Ramos, “Online domain adaptation for
occupancy mapping,” in Robotics: Science and Systems, 07 2020.

[134] J. Tan, R. Senanayake, and F. Ramos, “Renaissance robot: Optimal transport
policy fusion for learning diverse skills,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 7052–7059, 2022.

[135] A. Taghvaei and P. G. Mehta, “An optimal transport formulation of the
ensemble kalman filter,” IEEE Transactions on Automatic Control, vol. 66,
no. 7, pp. 3052–3067, 2021.

[136] Y. Yang, L. Nurbekyan, E. Negrini, R. Martin, and M. Pasha, “Optimal trans-
port for parameter identification of chaotic dynamics via invariant measures,”
SIAM Journal on Applied Dynamical Systems, vol. 22, no. 1, pp. 269–310,
2023.

[137] G. Peyré, M. Cuturi, et al., “Computational optimal transport: With ap-
plications to data science,” Foundations and Trends® in Machine Learning,
vol. 11, no. 5-6, pp. 355–607, 2019.

[138] S. Theodoridis, Machine Learning: A Bayesian and Optimization Perspective.
Elsevier Science, 2015.

[139] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, Third Edition. The MIT Press, 3rd ed., 2009.

[140] M. Teimouri, S. Hoseini, and S. Nadarajah, “Comparison of estimation meth-
ods for the weibull distribution,” Statistics: A Journal of and Applied Statis-
tics, 03 2011.

[141] B. Lakshminarayanan and C. R. Rojas, “A statistical decision-theoretical
perspective on the two-stage approach to parameter estimation,” in 2022
IEEE 61st Conference on Decision and Control (CDC), pp. 5369–5374, 2022.

[142] A. Bajcsy, D. P. Losey, M. K. O’malley, and A. D. Dragan, “Learning robot
objectives from physical human interaction,” in Conference on Robot Learn-
ing, pp. 217–226, PMLR, 2017.

[143] M. Annergren, C. A. Larsson, H. Hjalmarsson, X. Bombois, and B. Wahlberg,
“Application-oriented input design in system identification: Optimal input
design for control [applications of control],” IEEE Control Systems Magazine,
vol. 37, no. 2, pp. 31–56, 2017.

